मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

7\left(s^{8}-1\right)
7 को गुणन खण्ड निकाल्नुहोस्।
\left(s^{4}-1\right)\left(s^{4}+1\right)
मानौं s^{8}-1। s^{8}-1 लाई \left(s^{4}\right)^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(s^{2}-1\right)\left(s^{2}+1\right)
मानौं s^{4}-1। s^{4}-1 लाई \left(s^{2}\right)^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
\left(s-1\right)\left(s+1\right)
मानौं s^{2}-1। s^{2}-1 लाई s^{2}-1^{2} को रूपमा पुन: लेख्नुहोस्। वर्गहरूबीचको भिन्नता निम्न नियमको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
7\left(s-1\right)\left(s+1\right)\left(s^{2}+1\right)\left(s^{4}+1\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्। निम्न बहुपदीय खण्डहरूका कुनै पनि संयुक्तिक मूलहरू नभएकाले यिनको खण्डीकरण गरिएन: s^{2}+1,s^{4}+1।