मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ
प्रश्नोत्तरी
Polynomial

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-41 ab=6\times 63=378
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 6x^{2}+ax+bx+63 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-378 -2,-189 -3,-126 -6,-63 -7,-54 -9,-42 -14,-27 -18,-21
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 378 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-378=-379 -2-189=-191 -3-126=-129 -6-63=-69 -7-54=-61 -9-42=-51 -14-27=-41 -18-21=-39
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-27 b=-14
समाधान त्यो जोडी हो जसले जोडफल -41 दिन्छ।
\left(6x^{2}-27x\right)+\left(-14x+63\right)
6x^{2}-41x+63 लाई \left(6x^{2}-27x\right)+\left(-14x+63\right) को रूपमा पुन: लेख्नुहोस्।
3x\left(2x-9\right)-7\left(2x-9\right)
3x लाई पहिलो र -7 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(2x-9\right)\left(3x-7\right)
वितरक गुण प्रयोग गरेर समान टर्म 2x-9 खण्डिकरण गर्नुहोस्।
6x^{2}-41x+63=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 6\times 63}}{2\times 6}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 6\times 63}}{2\times 6}
-41 वर्ग गर्नुहोस्।
x=\frac{-\left(-41\right)±\sqrt{1681-24\times 63}}{2\times 6}
-4 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-41\right)±\sqrt{1681-1512}}{2\times 6}
-24 लाई 63 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-41\right)±\sqrt{169}}{2\times 6}
-1512 मा 1681 जोड्नुहोस्
x=\frac{-\left(-41\right)±13}{2\times 6}
169 को वर्गमूल निकाल्नुहोस्।
x=\frac{41±13}{2\times 6}
-41 विपरीत 41हो।
x=\frac{41±13}{12}
2 लाई 6 पटक गुणन गर्नुहोस्।
x=\frac{54}{12}
अब ± प्लस मानेर x=\frac{41±13}{12} समीकरणलाई हल गर्नुहोस्। 13 मा 41 जोड्नुहोस्
x=\frac{9}{2}
6 लाई झिकेर र रद्द गरेर, भिनन \frac{54}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
x=\frac{28}{12}
अब ± माइनस मानेर x=\frac{41±13}{12} समीकरणलाई हल गर्नुहोस्। 41 बाट 13 घटाउनुहोस्।
x=\frac{7}{3}
4 लाई झिकेर र रद्द गरेर, भिनन \frac{28}{12} लाई तल्लो टर्ममा घटाउनुहोस्।
6x^{2}-41x+63=6\left(x-\frac{9}{2}\right)\left(x-\frac{7}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि \frac{9}{2} र x_{2} को लागि \frac{7}{3} प्रतिस्थापित गर्नुहोस्।
6x^{2}-41x+63=6\times \frac{2x-9}{2}\left(x-\frac{7}{3}\right)
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{9}{2} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-41x+63=6\times \frac{2x-9}{2}\times \frac{3x-7}{3}
साझा हर पत्ता लगाइ र अंश घटाएर x बाट \frac{7}{3} घटाउनुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
6x^{2}-41x+63=6\times \frac{\left(2x-9\right)\left(3x-7\right)}{2\times 3}
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी \frac{2x-9}{2} लाई \frac{3x-7}{3} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
6x^{2}-41x+63=6\times \frac{\left(2x-9\right)\left(3x-7\right)}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
6x^{2}-41x+63=\left(2x-9\right)\left(3x-7\right)
6 र 6 मा सबैभन्दा ठूलो साझा गुणनखण्ड 6 रद्द गर्नुहोस्।