गुणन खण्ड
\left(n-3\right)\left(n-2\right)
मूल्याङ्कन गर्नुहोस्
\left(n-3\right)\left(n-2\right)
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
n^{2}-5n+6
पोलिनोमियललाई मानक रूपमा राख्न यसको पुन: क्रम गर्नुहोस्। पदहरूलाई सबैभन्दा ठूलोबाट सबैभन्दा सानो पावरको क्रममा राख्नुहोस्।
a+b=-5 ab=1\times 6=6
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई n^{2}+an+bn+6 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,-6 -2,-3
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। गुणनफल 6 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1-6=-7 -2-3=-5
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-3 b=-2
समाधान त्यो जोडी हो जसले जोडफल -5 दिन्छ।
\left(n^{2}-3n\right)+\left(-2n+6\right)
n^{2}-5n+6 लाई \left(n^{2}-3n\right)+\left(-2n+6\right) को रूपमा पुन: लेख्नुहोस्।
n\left(n-3\right)-2\left(n-3\right)
n लाई पहिलो र -2 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(n-3\right)\left(n-2\right)
वितरक गुण प्रयोग गरेर समान टर्म n-3 खण्डिकरण गर्नुहोस्।
n^{2}-5n+6=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
n=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
-5 वर्ग गर्नुहोस्।
n=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
-4 लाई 6 पटक गुणन गर्नुहोस्।
n=\frac{-\left(-5\right)±\sqrt{1}}{2}
-24 मा 25 जोड्नुहोस्
n=\frac{-\left(-5\right)±1}{2}
1 को वर्गमूल निकाल्नुहोस्।
n=\frac{5±1}{2}
-5 विपरीत 5हो।
n=\frac{6}{2}
अब ± प्लस मानेर n=\frac{5±1}{2} समीकरणलाई हल गर्नुहोस्। 1 मा 5 जोड्नुहोस्
n=3
6 लाई 2 ले भाग गर्नुहोस्।
n=\frac{4}{2}
अब ± माइनस मानेर n=\frac{5±1}{2} समीकरणलाई हल गर्नुहोस्। 5 बाट 1 घटाउनुहोस्।
n=2
4 लाई 2 ले भाग गर्नुहोस्।
n^{2}-5n+6=\left(n-3\right)\left(n-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि 3 र x_{2} को लागि 2 प्रतिस्थापित गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}