मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

a+b=-2 ab=3\left(-1\right)=-3
समीकरणको समाधान गर्न, बायाँ भागलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, बायाँ भागलाई 3x^{2}+ax+bx-1 को रूपमा पुन: लेख्न आवश्यक हुन्छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=-3 b=1
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, नकारात्मक नम्बरको यथार्थ मान सकारात्मकको भन्दा धेरै हुन्छ। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(3x^{2}-3x\right)+\left(x-1\right)
3x^{2}-2x-1 लाई \left(3x^{2}-3x\right)+\left(x-1\right) को रूपमा पुन: लेख्नुहोस्।
3x\left(x-1\right)+x-1
3x^{2}-3x मा 3x खण्डिकरण गर्नुहोस्।
\left(x-1\right)\left(3x+1\right)
वितरक गुण प्रयोग गरेर समान टर्म x-1 खण्डिकरण गर्नुहोस्।
x=1 x=-\frac{1}{3}
समीकरणको समाधान पत्ता लगाउन, x-1=0 र 3x+1=0 को समाधान गर्नुहोस्।
3x^{2}-2x-1=0
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
यो समीकरण मानक ढाँचामा छ: ax^{2}+bx+c=0। वर्ग सूत्र \frac{-b±\sqrt{b^{2}-4ac}}{2a} मा a लाई 3 ले, b लाई -2 ले र c लाई -1 ले प्रतिस्थापन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
-2 वर्ग गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-1\right)}}{2\times 3}
-4 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times 3}
-12 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-2\right)±\sqrt{16}}{2\times 3}
12 मा 4 जोड्नुहोस्
x=\frac{-\left(-2\right)±4}{2\times 3}
16 को वर्गमूल निकाल्नुहोस्।
x=\frac{2±4}{2\times 3}
-2 विपरीत 2हो।
x=\frac{2±4}{6}
2 लाई 3 पटक गुणन गर्नुहोस्।
x=\frac{6}{6}
अब ± प्लस मानेर x=\frac{2±4}{6} समीकरणलाई हल गर्नुहोस्। 4 मा 2 जोड्नुहोस्
x=1
6 लाई 6 ले भाग गर्नुहोस्।
x=-\frac{2}{6}
अब ± माइनस मानेर x=\frac{2±4}{6} समीकरणलाई हल गर्नुहोस्। 2 बाट 4 घटाउनुहोस्।
x=-\frac{1}{3}
2 लाई झिकेर र रद्द गरेर, भिनन \frac{-2}{6} लाई तल्लो टर्ममा घटाउनुहोस्।
x=1 x=-\frac{1}{3}
अब समिकरण समाधान भएको छ।
3x^{2}-2x-1=0
यो जस्ता वर्ग समीकरणहरूको वर्गलाई पूरा गरेर यिनीहरू हल हुन सक्छन्। वर्गलाई पूरा गर्नको लागि, समीकरण सुरुमा x^{2}+bx=c को रूपमा हुनुपर्छ।
3x^{2}-2x-1-\left(-1\right)=-\left(-1\right)
समीकरणको दुबैतिर 1 जोड्नुहोस्।
3x^{2}-2x=-\left(-1\right)
-1 लाई आफैबाट घटाउनाले 0 बाँकी रहन्छ।
3x^{2}-2x=1
0 बाट -1 घटाउनुहोस्।
\frac{3x^{2}-2x}{3}=\frac{1}{3}
दुबैतिर 3 ले भाग गर्नुहोस्।
x^{2}-\frac{2}{3}x=\frac{1}{3}
3 द्वारा भाग गर्नाले 3 द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
2 द्वारा -\frac{1}{3} प्राप्त गर्न x पदको गुणाङ्कलाई -\frac{2}{3} ले भाग गर्नुहोस्। त्यसपछि -\frac{1}{3} को वर्गलाई समीकरणको दुबैतिर जोड्नुहोस्। यो चरणले समीकरणको बायाँ भागलाई पूर्ण वर्ग बनाउँछ।
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
भिन्नको अंश र हर दुबैलाई वर्ग गरेर -\frac{1}{3} लाई वर्ग गर्नुहोस्।
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{1}{3} लाई \frac{1}{9} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
कारक x^{2}-\frac{2}{3}x+\frac{1}{9}। सामान्यतया, यदि x^{2}+bx+c एक उचित वर्ग हो भने यसलाई \left(x+\frac{b}{2}\right)^{2}को रूपमा कारक गर्न सकिन्छ।
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
समीकरणको दुबैतिरको वर्गमूल निकाल्नुहोस्।
x-\frac{1}{3}=\frac{2}{3} x-\frac{1}{3}=-\frac{2}{3}
सरल गर्नुहोस्।
x=1 x=-\frac{1}{3}
समीकरणको दुबैतिर \frac{1}{3} जोड्नुहोस्।