मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-x^{2}+x+20
पोलिनोमियललाई मानक रूपमा राख्न यसको पुन: क्रम गर्नुहोस्। पदहरूलाई सबैभन्दा ठूलोबाट सबैभन्दा सानो पावरको क्रममा राख्नुहोस्।
a+b=1 ab=-20=-20
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई -x^{2}+ax+bx+20 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,20 -2,10 -4,5
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -20 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+20=19 -2+10=8 -4+5=1
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=5 b=-4
समाधान त्यो जोडी हो जसले जोडफल 1 दिन्छ।
\left(-x^{2}+5x\right)+\left(-4x+20\right)
-x^{2}+x+20 लाई \left(-x^{2}+5x\right)+\left(-4x+20\right) को रूपमा पुन: लेख्नुहोस्।
-x\left(x-5\right)-4\left(x-5\right)
-x लाई पहिलो र -4 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x-5\right)\left(-x-4\right)
वितरक गुण प्रयोग गरेर समान टर्म x-5 खण्डिकरण गर्नुहोस्।
-x^{2}+x+20=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 20}}{2\left(-1\right)}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 20}}{2\left(-1\right)}
1 वर्ग गर्नुहोस्।
x=\frac{-1±\sqrt{1+4\times 20}}{2\left(-1\right)}
-4 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{1+80}}{2\left(-1\right)}
4 लाई 20 पटक गुणन गर्नुहोस्।
x=\frac{-1±\sqrt{81}}{2\left(-1\right)}
80 मा 1 जोड्नुहोस्
x=\frac{-1±9}{2\left(-1\right)}
81 को वर्गमूल निकाल्नुहोस्।
x=\frac{-1±9}{-2}
2 लाई -1 पटक गुणन गर्नुहोस्।
x=\frac{8}{-2}
अब ± प्लस मानेर x=\frac{-1±9}{-2} समीकरणलाई हल गर्नुहोस्। 9 मा -1 जोड्नुहोस्
x=-4
8 लाई -2 ले भाग गर्नुहोस्।
x=-\frac{10}{-2}
अब ± माइनस मानेर x=\frac{-1±9}{-2} समीकरणलाई हल गर्नुहोस्। -1 बाट 9 घटाउनुहोस्।
x=5
-10 लाई -2 ले भाग गर्नुहोस्।
-x^{2}+x+20=-\left(x-\left(-4\right)\right)\left(x-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -4 र x_{2} को लागि 5 प्रतिस्थापित गर्नुहोस्।
-x^{2}+x+20=-\left(x+4\right)\left(x-5\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।