गुणन खण्ड
\left(6x-5\right)\left(3x+8\right)
मूल्याङ्कन गर्नुहोस्
\left(6x-5\right)\left(3x+8\right)
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
18x^{2}+33x-40
समान पदहरूको गुणन गरी समायोजन गर्नुहोस्।
a+b=33 ab=18\left(-40\right)=-720
एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई 18x^{2}+ax+bx-40 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
-1,720 -2,360 -3,240 -4,180 -5,144 -6,120 -8,90 -9,80 -10,72 -12,60 -15,48 -16,45 -18,40 -20,36 -24,30
ab नकारात्मक भएको हुनाले, a र b को विपरीत चिन्ह हुन्छ। a+b सकारात्मक भएको हुनाले, सकारात्मक नम्बरको यथार्थ मान नकारात्मकको भन्दा धेरै हुन्छ। गुणनफल -720 दिने सबै पूर्ण संख्याहरूलाई सूचीबद्ध गर्नुहोस्।
-1+720=719 -2+360=358 -3+240=237 -4+180=176 -5+144=139 -6+120=114 -8+90=82 -9+80=71 -10+72=62 -12+60=48 -15+48=33 -16+45=29 -18+40=22 -20+36=16 -24+30=6
प्रत्येक जोडीका लागि जोडफल गणना गर्नुहोस्।
a=-15 b=48
समाधान त्यो जोडी हो जसले जोडफल 33 दिन्छ।
\left(18x^{2}-15x\right)+\left(48x-40\right)
18x^{2}+33x-40 लाई \left(18x^{2}-15x\right)+\left(48x-40\right) को रूपमा पुन: लेख्नुहोस्।
3x\left(6x-5\right)+8\left(6x-5\right)
3x लाई पहिलो र 8 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(6x-5\right)\left(3x+8\right)
वितरक गुण प्रयोग गरेर समान टर्म 6x-5 खण्डिकरण गर्नुहोस्।
18x^{2}+33x-40
33x प्राप्त गर्नको लागि -15x र 48x लाई संयोजन गर्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}