मुख्य सामग्रीमा स्किप गर्नुहोस्
गुणन खण्ड
Tick mark Image
मूल्याङ्कन गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

3\left(-x^{2}-2x-1\right)
3 को गुणन खण्ड निकाल्नुहोस्।
a+b=-2 ab=-\left(-1\right)=1
मानौं -x^{2}-2x-1। एक्सप्रेसनलाई समूहमा राखेर फ्याक्टर निकाल्नुहोस्। सर्वप्रथम, एक्सप्रेसनलाई -x^{2}+ax+bx-1 को रूपमा पुन: लेख्न आवश्यक छ। a र b पत्ता लगाउन, समाधान गर्नका लागि प्रणाली सेटअप गर्नुहोस्।
a=-1 b=-1
ab सकारात्मक भएको हुनाले, a र b को समान चिन्ह हुन्छ। a+b नकारात्मक भएको हुनाले, a र b दुबै नकारात्मक हुन्छन्। त्यस्तो मात्र जोडी प्रणाली समाधान हो।
\left(-x^{2}-x\right)+\left(-x-1\right)
-x^{2}-2x-1 लाई \left(-x^{2}-x\right)+\left(-x-1\right) को रूपमा पुन: लेख्नुहोस्।
-x\left(x+1\right)-\left(x+1\right)
-x लाई पहिलो र -1 लाई दोस्रो समूहमा सन्दर्भ लिनुहोस्।
\left(x+1\right)\left(-x-1\right)
वितरक गुण प्रयोग गरेर समान टर्म x+1 खण्डिकरण गर्नुहोस्।
3\left(x+1\right)\left(-x-1\right)
पूर्णतया खण्डीकरण गरिएको अभिव्यञ्जक पुन: लेख्नुहोस्।
-3x^{2}-6x-3=0
क्वाड्रेटिक पोलिनोमियललाई ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) रूपान्तरणको प्रयोग गरेर खण्डिकरण गर्न सकिन्छ, जहाँ x_{1} र x_{2} क्वाड्रेटिक समिकरण ax^{2}+bx+c=0 को समाधान हो।
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 रूपका सबै समीकरणहरू वर्ग सूत्र: \frac{-b±\sqrt{b^{2}-4ac}}{2a} प्रयोग गरेर हल गर्न सकिन्छ। एउटा, ± जोड हँदा र अर्को घटाउ हुँदा वर्ग सूत्रले दुईवटा समाधानहरू दिन्छ।
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
-6 वर्ग गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36+12\left(-3\right)}}{2\left(-3\right)}
-4 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-3\right)}
12 लाई -3 पटक गुणन गर्नुहोस्।
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-3\right)}
-36 मा 36 जोड्नुहोस्
x=\frac{-\left(-6\right)±0}{2\left(-3\right)}
0 को वर्गमूल निकाल्नुहोस्।
x=\frac{6±0}{2\left(-3\right)}
-6 विपरीत 6हो।
x=\frac{6±0}{-6}
2 लाई -3 पटक गुणन गर्नुहोस्।
-3x^{2}-6x-3=-3\left(x-\left(-1\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) को प्रयोग गरेर मौलिक अभिव्यञ्जकलाई खण्डिकरण गर्नुहोस्। x_{1} को लागि -1 र x_{2} को लागि -1 प्रतिस्थापित गर्नुहोस्।
-3x^{2}-6x-3=-3\left(x+1\right)\left(x+1\right)
p-\left(-q\right) देखि p+q को स्वरूपमा रहेका सबै अभिव्यञ्जकहरूलाई सरल गर्नुहोस्।