मुख्य सामग्रीमा स्किप गर्नुहोस्
x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x^{2}x^{2}+1=5x^{2}
शून्यले गरिने भाग परिभाषित नभएकाले चर x 0 सँग बराबर हुन सक्दैन। समीकरणको दुबैतिर x^{2} ले गुणन गर्नुहोस्।
x^{4}+1=5x^{2}
समान आधारका पावरहरू गुणन गर्न तिनीहरूका घातांकहरू थप्नुहोस्। 4 प्राप्त गर्न 2 र 2 थप्नुहोस्।
x^{4}+1-5x^{2}=0
दुवै छेउबाट 5x^{2} घटाउनुहोस्।
t^{2}-5t+1=0
t लाई x^{2} ले प्रतिस्थापन गर्नुहोस्।
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 ढाँचाका सबै समीकरणहरूलाई क्वाड्रेटिक सूत्र प्रयोग गरी समाधन गर्न सकिन्छ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। क्वाड्रेटिक सूत्रमा a लाई 1 ले, b लाई -5 ले, र c लाई 1 ले प्रतिस्थापन गर्नुहोस्।
t=\frac{5±\sqrt{21}}{2}
हिसाब गर्नुहोस्।
t=\frac{\sqrt{21}+5}{2} t=\frac{5-\sqrt{21}}{2}
± प्लस र ± माइनस हुँदा समीकरण t=\frac{5±\sqrt{21}}{2} लाई समाधान गर्नुहोस्।
x=\frac{\sqrt{3}+\sqrt{7}}{2} x=-\frac{\sqrt{3}+\sqrt{7}}{2} x=-\frac{\sqrt{3}-\sqrt{7}}{2} x=\frac{\sqrt{3}-\sqrt{7}}{2}
x=t^{2} भएकाले, समाधानहरू हरेक t को x=±\sqrt{t} लाई मूल्याङ्कन गरेर प्राप्त गरिन्छ।