मुख्य सामग्रीमा स्किप गर्नुहोस्
l को लागि हल गर्नुहोस्
Tick mark Image

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l=1
समीकरण मानक रूपमा छ।
\frac{\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
दुबैतिर \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) ले भाग गर्नुहोस्।
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
\left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) द्वारा भाग गर्नाले \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) द्वारा गुणा गरिएकोलाई फिर्ता गर्दछ।