मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+2y=1,3x-9y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y+1
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
3\left(-2y+1\right)-9y=0
-2y+1 लाई x ले अर्को समीकरण 3x-9y=0 मा प्रतिस्थापन गर्नुहोस्।
-6y+3-9y=0
3 लाई -2y+1 पटक गुणन गर्नुहोस्।
-15y+3=0
-9y मा -6y जोड्नुहोस्
-15y=-3
समीकरणको दुबैतिरबाट 3 घटाउनुहोस्।
y=\frac{1}{5}
दुबैतिर -15 ले भाग गर्नुहोस्।
x=-2\times \frac{1}{5}+1
x=-2y+1 मा y लाई \frac{1}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-\frac{2}{5}+1
-2 लाई \frac{1}{5} पटक गुणन गर्नुहोस्।
x=\frac{3}{5}
-\frac{2}{5} मा 1 जोड्नुहोस्
x=\frac{3}{5},y=\frac{1}{5}
अब प्रणाली समाधान भएको छ।
x+2y=1,3x-9y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\3&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\3&-9\end{matrix}\right))\left(\begin{matrix}1&2\\3&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-9\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\3&-9\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-9\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-9\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-2\times 3}&-\frac{2}{-9-2\times 3}\\-\frac{3}{-9-2\times 3}&\frac{1}{-9-2\times 3}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{15}\\\frac{1}{5}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\\\frac{1}{5}\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
x=\frac{3}{5},y=\frac{1}{5}
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+2y=1,3x-9y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+3\times 2y=3,3x-9y=0
x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
3x+6y=3,3x-9y=0
सरल गर्नुहोस्।
3x-3x+6y+9y=3
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+6y=3 बाट 3x-9y=0 घटाउनुहोस्।
6y+9y=3
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
15y=3
9y मा 6y जोड्नुहोस्
y=\frac{1}{5}
दुबैतिर 15 ले भाग गर्नुहोस्।
3x-9\times \frac{1}{5}=0
3x-9y=0 मा y लाई \frac{1}{5} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x-\frac{9}{5}=0
-9 लाई \frac{1}{5} पटक गुणन गर्नुहोस्।
3x=\frac{9}{5}
समीकरणको दुबैतिर \frac{9}{5} जोड्नुहोस्।
x=\frac{3}{5}
दुबैतिर 3 ले भाग गर्नुहोस्।
x=\frac{3}{5},y=\frac{1}{5}
अब प्रणाली समाधान भएको छ।