मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

x+2y=-1,2x-3y=12
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+2y=-1
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-2y-1
समीकरणको दुबैतिरबाट 2y घटाउनुहोस्।
2\left(-2y-1\right)-3y=12
-2y-1 लाई x ले अर्को समीकरण 2x-3y=12 मा प्रतिस्थापन गर्नुहोस्।
-4y-2-3y=12
2 लाई -2y-1 पटक गुणन गर्नुहोस्।
-7y-2=12
-3y मा -4y जोड्नुहोस्
-7y=14
समीकरणको दुबैतिर 2 जोड्नुहोस्।
y=-2
दुबैतिर -7 ले भाग गर्नुहोस्।
x=-2\left(-2\right)-1
x=-2y-1 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=4-1
-2 लाई -2 पटक गुणन गर्नुहोस्।
x=3
4 मा -1 जोड्नुहोस्
x=3,y=-2
अब प्रणाली समाधान भएको छ।
x+2y=-1,2x-3y=12
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\12\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\2&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 2}&-\frac{2}{-3-2\times 2}\\-\frac{2}{-3-2\times 2}&\frac{1}{-3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)+\frac{2}{7}\times 12\\\frac{2}{7}\left(-1\right)-\frac{1}{7}\times 12\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=3,y=-2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+2y=-1,2x-3y=12
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x+2\times 2y=2\left(-1\right),2x-3y=12
x र 2x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
2x+4y=-2,2x-3y=12
सरल गर्नुहोस्।
2x-2x+4y+3y=-2-12
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+4y=-2 बाट 2x-3y=12 घटाउनुहोस्।
4y+3y=-2-12
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
7y=-2-12
3y मा 4y जोड्नुहोस्
7y=-14
-12 मा -2 जोड्नुहोस्
y=-2
दुबैतिर 7 ले भाग गर्नुहोस्।
2x-3\left(-2\right)=12
2x-3y=12 मा y लाई -2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
2x+6=12
-3 लाई -2 पटक गुणन गर्नुहोस्।
2x=6
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
x=3
दुबैतिर 2 ले भाग गर्नुहोस्।
x=3,y=-2
अब प्रणाली समाधान भएको छ।