मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5x+y=7,-3x+7y=11
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5x+y=7
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
5x=-y+7
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{5}\left(-y+7\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
x=-\frac{1}{5}y+\frac{7}{5}
\frac{1}{5} लाई -y+7 पटक गुणन गर्नुहोस्।
-3\left(-\frac{1}{5}y+\frac{7}{5}\right)+7y=11
\frac{-y+7}{5} लाई x ले अर्को समीकरण -3x+7y=11 मा प्रतिस्थापन गर्नुहोस्।
\frac{3}{5}y-\frac{21}{5}+7y=11
-3 लाई \frac{-y+7}{5} पटक गुणन गर्नुहोस्।
\frac{38}{5}y-\frac{21}{5}=11
7y मा \frac{3y}{5} जोड्नुहोस्
\frac{38}{5}y=\frac{76}{5}
समीकरणको दुबैतिर \frac{21}{5} जोड्नुहोस्।
y=2
समीकरणको दुबैतिर \frac{38}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-\frac{1}{5}\times 2+\frac{7}{5}
x=-\frac{1}{5}y+\frac{7}{5} मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=\frac{-2+7}{5}
-\frac{1}{5} लाई 2 पटक गुणन गर्नुहोस्।
x=1
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर \frac{7}{5} लाई -\frac{2}{5} मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=1,y=2
अब प्रणाली समाधान भएको छ।
5x+y=7,-3x+7y=11
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}5&1\\-3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&1\\-3&7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-3&7\end{matrix}\right))\left(\begin{matrix}7\\11\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\right)}&-\frac{1}{5\times 7-\left(-3\right)}\\-\frac{-3}{5\times 7-\left(-3\right)}&\frac{5}{5\times 7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}&-\frac{1}{38}\\\frac{3}{38}&\frac{5}{38}\end{matrix}\right)\left(\begin{matrix}7\\11\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{38}\times 7-\frac{1}{38}\times 11\\\frac{3}{38}\times 7+\frac{5}{38}\times 11\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
x=1,y=2
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
5x+y=7,-3x+7y=11
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-3\times 5x-3y=-3\times 7,5\left(-3\right)x+5\times 7y=5\times 11
5x र -3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 5 ले गुणन गर्नुहोस्।
-15x-3y=-21,-15x+35y=55
सरल गर्नुहोस्।
-15x+15x-3y-35y=-21-55
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -15x-3y=-21 बाट -15x+35y=55 घटाउनुहोस्।
-3y-35y=-21-55
15x मा -15x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -15x र 15x राशी रद्द हुन्छन्।
-38y=-21-55
-35y मा -3y जोड्नुहोस्
-38y=-76
-55 मा -21 जोड्नुहोस्
y=2
दुबैतिर -38 ले भाग गर्नुहोस्।
-3x+7\times 2=11
-3x+7y=11 मा y लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-3x+14=11
7 लाई 2 पटक गुणन गर्नुहोस्।
-3x=-3
समीकरणको दुबैतिरबाट 14 घटाउनुहोस्।
x=1
दुबैतिर -3 ले भाग गर्नुहोस्।
x=1,y=2
अब प्रणाली समाधान भएको छ।