मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

y+x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
2x+y=2,x+y=-2
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
2x+y=2
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
2x=-y+2
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
x=\frac{1}{2}\left(-y+2\right)
दुबैतिर 2 ले भाग गर्नुहोस्।
x=-\frac{1}{2}y+1
\frac{1}{2} लाई -y+2 पटक गुणन गर्नुहोस्।
-\frac{1}{2}y+1+y=-2
-\frac{y}{2}+1 लाई x ले अर्को समीकरण x+y=-2 मा प्रतिस्थापन गर्नुहोस्।
\frac{1}{2}y+1=-2
y मा -\frac{y}{2} जोड्नुहोस्
\frac{1}{2}y=-3
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
y=-6
दुबैतिर 2 ले गुणन गर्नुहोस्।
x=-\frac{1}{2}\left(-6\right)+1
x=-\frac{1}{2}y+1 मा y लाई -6 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=3+1
-\frac{1}{2} लाई -6 पटक गुणन गर्नुहोस्।
x=4
3 मा 1 जोड्नुहोस्
x=4,y=-6
अब प्रणाली समाधान भएको छ।
y+x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
2x+y=2,x+y=-2
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}2&1\\1&1\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-\left(-2\right)\\-2+2\left(-2\right)\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
हिसाब गर्नुहोस्।
x=4,y=-6
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
y+x=-2
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा x थप्नुहोस्।
2x+y=2,x+y=-2
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2x-x+y-y=2+2
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2x+y=2 बाट x+y=-2 घटाउनुहोस्।
2x-x=2+2
-y मा y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै y र -y राशी रद्द हुन्छन्।
x=2+2
-x मा 2x जोड्नुहोस्
x=4
2 मा 2 जोड्नुहोस्
4+y=-2
x+y=-2 मा x लाई 4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-6
समीकरणको दुबैतिरबाट 4 घटाउनुहोस्।
x=4,y=-6
अब प्रणाली समाधान भएको छ।