मुख्य सामग्रीमा स्किप गर्नुहोस्
x, y को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

-2x+4y=-4,x-3y=6
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
-2x+4y=-4
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
-2x=-4y-4
समीकरणको दुबैतिरबाट 4y घटाउनुहोस्।
x=-\frac{1}{2}\left(-4y-4\right)
दुबैतिर -2 ले भाग गर्नुहोस्।
x=2y+2
-\frac{1}{2} लाई -4y-4 पटक गुणन गर्नुहोस्।
2y+2-3y=6
2+2y लाई x ले अर्को समीकरण x-3y=6 मा प्रतिस्थापन गर्नुहोस्।
-y+2=6
-3y मा 2y जोड्नुहोस्
-y=4
समीकरणको दुबैतिरबाट 2 घटाउनुहोस्।
y=-4
दुबैतिर -1 ले भाग गर्नुहोस्।
x=2\left(-4\right)+2
x=2y+2 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-8+2
2 लाई -4 पटक गुणन गर्नुहोस्।
x=-6
-8 मा 2 जोड्नुहोस्
x=-6,y=-4
अब प्रणाली समाधान भएको छ।
-2x+4y=-4,x-3y=6
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right))\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}-2&4\\1&-3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-2\left(-3\right)-4}&-\frac{4}{-2\left(-3\right)-4}\\-\frac{1}{-2\left(-3\right)-4}&-\frac{2}{-2\left(-3\right)-4}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}&-2\\-\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\left(-4\right)-2\times 6\\-\frac{1}{2}\left(-4\right)-6\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-6,y=-4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
-2x+4y=-4,x-3y=6
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-2x+4y=-4,-2x-2\left(-3\right)y=-2\times 6
-2x र x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई -2 ले गुणन गर्नुहोस्।
-2x+4y=-4,-2x+6y=-12
सरल गर्नुहोस्।
-2x+2x+4y-6y=-4+12
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -2x+4y=-4 बाट -2x+6y=-12 घटाउनुहोस्।
4y-6y=-4+12
2x मा -2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -2x र 2x राशी रद्द हुन्छन्।
-2y=-4+12
-6y मा 4y जोड्नुहोस्
-2y=8
12 मा -4 जोड्नुहोस्
y=-4
दुबैतिर -2 ले भाग गर्नुहोस्।
x-3\left(-4\right)=6
x-3y=6 मा y लाई -4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x+12=6
-3 लाई -4 पटक गुणन गर्नुहोस्।
x=-6
समीकरणको दुबैतिरबाट 12 घटाउनुहोस्।
x=-6,y=-4
अब प्रणाली समाधान भएको छ।