x, y को लागि हल गर्नुहोस्
x=-0.9
y=0.4
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
x+y=-0.5,-0.6x+0.7y=0.82
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=-0.5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y-0.5
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
-0.6\left(-y-0.5\right)+0.7y=0.82
-y-0.5 लाई x ले अर्को समीकरण -0.6x+0.7y=0.82 मा प्रतिस्थापन गर्नुहोस्।
0.6y+0.3+0.7y=0.82
-0.6 लाई -y-0.5 पटक गुणन गर्नुहोस्।
1.3y+0.3=0.82
\frac{7y}{10} मा \frac{3y}{5} जोड्नुहोस्
1.3y=0.52
समीकरणको दुबैतिरबाट 0.3 घटाउनुहोस्।
y=0.4
समीकरणको दुबैतिर 1.3 ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-0.4-0.5
x=-y-0.5 मा y लाई 0.4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=-0.9
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर -0.5 लाई -0.4 मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
x=-0.9,y=0.4
अब प्रणाली समाधान भएको छ।
x+y=-0.5,-0.6x+0.7y=0.82
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.7}{0.7-\left(-0.6\right)}&-\frac{1}{0.7-\left(-0.6\right)}\\-\frac{-0.6}{0.7-\left(-0.6\right)}&\frac{1}{0.7-\left(-0.6\right)}\end{matrix}\right)\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}&-\frac{10}{13}\\\frac{6}{13}&\frac{10}{13}\end{matrix}\right)\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\left(-0.5\right)-\frac{10}{13}\times 0.82\\\frac{6}{13}\left(-0.5\right)+\frac{10}{13}\times 0.82\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.9\\0.4\end{matrix}\right)
हिसाब गर्नुहोस्।
x=-0.9,y=0.4
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
x+y=-0.5,-0.6x+0.7y=0.82
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
-0.6x-0.6y=-0.6\left(-0.5\right),-0.6x+0.7y=0.82
x र -\frac{3x}{5} लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई -0.6 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
-0.6x-0.6y=0.3,-0.6x+0.7y=0.82
सरल गर्नुहोस्।
-0.6x+0.6x-0.6y-0.7y=0.3-0.82
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर -0.6x-0.6y=0.3 बाट -0.6x+0.7y=0.82 घटाउनुहोस्।
-0.6y-0.7y=0.3-0.82
\frac{3x}{5} मा -\frac{3x}{5} जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै -\frac{3x}{5} र \frac{3x}{5} राशी रद्द हुन्छन्।
-1.3y=0.3-0.82
-\frac{7y}{10} मा -\frac{3y}{5} जोड्नुहोस्
-1.3y=-0.52
साझा हर फेला पारेर तथा अंशहरूलाई जोडेर 0.3 लाई -0.82 मा जोड्नुहोस्। त्यसपछि सम्भव भएमा भिन्नलाई न्यूनतम पदमा झार्नुहोस्।
y=0.4
समीकरणको दुबैतिर -1.3 ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
-0.6x+0.7\times 0.4=0.82
-0.6x+0.7y=0.82 मा y लाई 0.4 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
-0.6x+0.28=0.82
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी 0.7 लाई 0.4 पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
-0.6x=0.54
समीकरणको दुबैतिरबाट 0.28 घटाउनुहोस्।
x=-0.9
समीकरणको दुबैतिर -0.6 ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
x=-0.9,y=0.4
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}