\left| \begin{array} { c c c } { 10 } & { 13 } & { - 11 } \\ { 0 } & { - 17 } & { 1 } \\ { - 15 } & { 19 } & { 4 } \end{array} \right|
मूल्याङ्कन गर्नुहोस्
1740
गुणन खण्ड
2^{2}\times 3\times 5\times 29
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
det(\left(\begin{matrix}10&13&-11\\0&-17&1\\-15&19&4\end{matrix}\right))
विकर्णहरूको विधिको प्रयोग गरेर मेट्रिक्सको डिटरमिनेन्ट पत्ता लगाउनुहोस्।
\left(\begin{matrix}10&13&-11&10&13\\0&-17&1&0&-17\\-15&19&4&-15&19\end{matrix}\right)
पहिलो दुईवटा लहरहरूलाई चौथो र पाँचौं लहरहरूको रूपमा दोहोराएर वास्तविक मेट्रिक्सलाई विस्तार गर्नुहोस्।
10\left(-17\right)\times 4+13\left(-15\right)=-875
माथिल्लो देव्रे प्रवेश द्वारबाट सुरु गरी, विकर्णसँग तल गुणन गर्नुहोस् र परिणामी गुणनफलहरू जोड्नुहोस्।
-15\left(-17\right)\left(-11\right)+19\times 10=-2615
तल्लो दाहिने प्रवेश द्वारबाट सुरु गरी, विकर्णसँग माथि गुणन गर्नुहोस् र परिणामी गुणनफलहरू जोड्नुहोस्।
-875-\left(-2615\right)
माथिल्लो विकर्ण गुणनफलहरूको योगफललाई तल्लो विकर्ण गुणनफलहरूको योगफलबाट घटाउनुहोस्।
1740
-875 बाट -2615 घटाउनुहोस्।
det(\left(\begin{matrix}10&13&-11\\0&-17&1\\-15&19&4\end{matrix}\right))
माइनरहरूले विस्तार गर्ने विधिको प्रयोग गरेर मेट्रिक्सको डिटरमिनेन्ट पत्ता लगाउनुहोस् (यसलाई सह-गुणन खण्डहरूले विस्तार गर्ने विधि पनि भनिन्छ)।
10det(\left(\begin{matrix}-17&1\\19&4\end{matrix}\right))-13det(\left(\begin{matrix}0&1\\-15&4\end{matrix}\right))-11det(\left(\begin{matrix}0&-17\\-15&19\end{matrix}\right))
माइनरहरूद्वारा विस्तार गर्न, पहिलो पङ्क्तिका प्रत्येक तत्त्वलाई यसको माइनरले गुणन गर्नुहोस्, जुन पङ्क्ति र लहरमा समावेश भएको तत्त्वलाई मेटाएर डिटरमिनेन्टको 2\times 2 को मेट्रिक्स सिर्जना गरिएको हुन्छ, त्यसपछि तत्वको स्थितिको चिन्हले गुणन गर्नुहोस्।
10\left(-17\times 4-19\right)-13\left(-\left(-15\right)\right)-11\left(-\left(-15\left(-17\right)\right)\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, निर्धारक ad-bc हो।
10\left(-87\right)-13\times 15-11\left(-255\right)
सरल गर्नुहोस्।
1740
अन्तिम परिणाम निकाल्न पदहरूलाई जोड्नुहोस्।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}