\left\{ \begin{array} { l } { y = 9 - 2 x } \\ { 3 x + 2 y = 16 } \end{array} \right.
y, x को लागि हल गर्नुहोस्
x=2
y=5
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
y+2x=9
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+2x=9,2y+3x=16
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
y+2x=9
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
y=-2x+9
समीकरणको दुबैतिरबाट 2x घटाउनुहोस्।
2\left(-2x+9\right)+3x=16
-2x+9 लाई y ले अर्को समीकरण 2y+3x=16 मा प्रतिस्थापन गर्नुहोस्।
-4x+18+3x=16
2 लाई -2x+9 पटक गुणन गर्नुहोस्।
-x+18=16
3x मा -4x जोड्नुहोस्
-x=-2
समीकरणको दुबैतिरबाट 18 घटाउनुहोस्।
x=2
दुबैतिर -1 ले भाग गर्नुहोस्।
y=-2\times 2+9
y=-2x+9 मा x लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-4+9
-2 लाई 2 पटक गुणन गर्नुहोस्।
y=5
-4 मा 9 जोड्नुहोस्
y=5,x=2
अब प्रणाली समाधान भएको छ।
y+2x=9
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+2x=9,2y+3x=16
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}9\\16\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}1&2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&2\\2&3\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&3\end{matrix}\right))\left(\begin{matrix}9\\16\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 2}&-\frac{2}{3-2\times 2}\\-\frac{2}{3-2\times 2}&\frac{1}{3-2\times 2}\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3&2\\2&-1\end{matrix}\right)\left(\begin{matrix}9\\16\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\times 9+2\times 16\\2\times 9-16\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
हिसाब गर्नुहोस्।
y=5,x=2
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
y+2x=9
पहिलो समीकरणलाई मनन गर्नुहोस्। दुबै छेउहरूमा 2x थप्नुहोस्।
y+2x=9,2y+3x=16
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
2y+2\times 2x=2\times 9,2y+3x=16
y र 2y लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 2 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
2y+4x=18,2y+3x=16
सरल गर्नुहोस्।
2y-2y+4x-3x=18-16
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 2y+4x=18 बाट 2y+3x=16 घटाउनुहोस्।
4x-3x=18-16
-2y मा 2y जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2y र -2y राशी रद्द हुन्छन्।
x=18-16
-3x मा 4x जोड्नुहोस्
x=2
-16 मा 18 जोड्नुहोस्
2y+3\times 2=16
2y+3x=16 मा x लाई 2 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
2y+6=16
3 लाई 2 पटक गुणन गर्नुहोस्।
2y=10
समीकरणको दुबैतिरबाट 6 घटाउनुहोस्।
y=5
दुबैतिर 2 ले भाग गर्नुहोस्।
y=5,x=2
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}