\left\{ \begin{array} { l } { x + y = 50 } \\ { 3 x = 2 y } \end{array} \right.
x, y को लागि हल गर्नुहोस्
x=20
y=30
ग्राफ
प्रश्नोत्तरी
Simultaneous Equation
\left\{ \begin{array} { l } { x + y = 50 } \\ { 3 x = 2 y } \end{array} \right.
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
3x-2y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
x+y=50,3x-2y=0
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
x+y=50
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको x लाई अलग गरी x का लागि हल गर्नुहोस्।
x=-y+50
समीकरणको दुबैतिरबाट y घटाउनुहोस्।
3\left(-y+50\right)-2y=0
-y+50 लाई x ले अर्को समीकरण 3x-2y=0 मा प्रतिस्थापन गर्नुहोस्।
-3y+150-2y=0
3 लाई -y+50 पटक गुणन गर्नुहोस्।
-5y+150=0
-2y मा -3y जोड्नुहोस्
-5y=-150
समीकरणको दुबैतिरबाट 150 घटाउनुहोस्।
y=30
दुबैतिर -5 ले भाग गर्नुहोस्।
x=-30+50
x=-y+50 मा y लाई 30 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
x=20
-30 मा 50 जोड्नुहोस्
x=20,y=30
अब प्रणाली समाधान भएको छ।
3x-2y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
x+y=50,3x-2y=0
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}1&1\\3&-2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3}&-\frac{1}{-2-3}\\-\frac{3}{-2-3}&\frac{1}{-2-3}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 50\\\frac{3}{5}\times 50\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\30\end{matrix}\right)
हिसाब गर्नुहोस्।
x=20,y=30
मेट्रिक्स तत्त्वहरू x र y लाई ता्नुहोस्।
3x-2y=0
दोस्रो समीकरणलाई मनन गर्नुहोस्। दुवै छेउबाट 2y घटाउनुहोस्।
x+y=50,3x-2y=0
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
3x+3y=3\times 50,3x-2y=0
x र 3x लाई बराबर बनाउन, पहिलो समीकरणको प्रत्येक भागमा सबै पदहरूलाई 3 ले गुणन गर्नुहोस् र दोस्रोको प्रत्येक भागमा सबै पदहरूलाई 1 ले गुणन गर्नुहोस्।
3x+3y=150,3x-2y=0
सरल गर्नुहोस्।
3x-3x+3y+2y=150
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 3x+3y=150 बाट 3x-2y=0 घटाउनुहोस्।
3y+2y=150
-3x मा 3x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 3x र -3x राशी रद्द हुन्छन्।
5y=150
2y मा 3y जोड्नुहोस्
y=30
दुबैतिर 5 ले भाग गर्नुहोस्।
3x-2\times 30=0
3x-2y=0 मा y लाई 30 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
3x-60=0
-2 लाई 30 पटक गुणन गर्नुहोस्।
3x=60
समीकरणको दुबैतिर 60 जोड्नुहोस्।
x=20
दुबैतिर 3 ले भाग गर्नुहोस्।
x=20,y=30
अब प्रणाली समाधान भएको छ।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}