मुख्य सामग्रीमा स्किप गर्नुहोस्
y, x को लागि हल गर्नुहोस्
Tick mark Image
ग्राफ

वेब खोजीबाट समान समस्याहरू

साझेदारी गर्नुहोस्

5y+2x=5,y+2x=5
प्रतिस्थापनको प्रयोग गरी जोडी समीकरणहरूको हल गर्न, पहिले एउटा चरको एउटा समीकरण हल गर्नुहोस्। त्यसपछि त्यो चरको मानलाई अर्को समीकरणमा प्रतिस्थापन गर्नुहोस्।
5y+2x=5
समीकरणहरू मध्ये एउटा छान्नुहोस् र बराबर चिह्नको बायाँतिरको y लाई अलग गरी y का लागि हल गर्नुहोस्।
5y=-2x+5
समीकरणको दुबैतिरबाट 2x घटाउनुहोस्।
y=\frac{1}{5}\left(-2x+5\right)
दुबैतिर 5 ले भाग गर्नुहोस्।
y=-\frac{2}{5}x+1
\frac{1}{5} लाई -2x+5 पटक गुणन गर्नुहोस्।
-\frac{2}{5}x+1+2x=5
-\frac{2x}{5}+1 लाई y ले अर्को समीकरण y+2x=5 मा प्रतिस्थापन गर्नुहोस्।
\frac{8}{5}x+1=5
2x मा -\frac{2x}{5} जोड्नुहोस्
\frac{8}{5}x=4
समीकरणको दुबैतिरबाट 1 घटाउनुहोस्।
x=\frac{5}{2}
समीकरणको दुबैतिर \frac{8}{5} ले भाग गर्नुहोस्, जुन दुबैतिर भिन्नको व्युत्क्रमानुपातिकले गुणन गरे बराबर हुन्छ।
y=-\frac{2}{5}\times \frac{5}{2}+1
y=-\frac{2}{5}x+1 मा x लाई \frac{5}{2} ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले y लाई सिधै हल गर्न सक्नुहुन्छ।
y=-1+1
अंश पटकले अंशलाई र हर पटकलाई हरले गुणन गरी -\frac{2}{5} लाई \frac{5}{2} पटक गुणन गर्नुहोस्। त्यसपछि सम्भव भएसम्म न्यूनतम पदहरूमा भिन्नलाई झार्नुहोस्।
y=0
-1 मा 1 जोड्नुहोस्
y=0,x=\frac{5}{2}
अब प्रणाली समाधान भएको छ।
5y+2x=5,y+2x=5
समीकरणलाई स्तरीय रूपमा राख्नुहोस् र त्यसपछि समीकरणहरूको प्रणालीलाई हल गर्न मेट्रिक्सहरू प्रयोग गर्नुहोस्।
\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
समीकरणहरूलाई मेट्रिक्स ढाँचामा लेख्नुहोस्।
inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5&2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
समीकरणलाई \left(\begin{matrix}5&2\\1&2\end{matrix}\right) को विपरीत म्याट्रिक्सले बायाँतिर गुणन गर्नुहोस्।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
म्यार्टिक्सको उत्पादन र यसको विपरीत नै म्याट्रिक्सको पहिचान हो।
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\5\end{matrix}\right)
बराबर चिन्हको बायाँ भागमा रहेका म्याट्रिक्सहरूलाई गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-2}&-\frac{2}{5\times 2-2}\\-\frac{1}{5\times 2-2}&\frac{5}{5\times 2-2}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
2\times 2 मेट्रिक्स \left(\begin{matrix}a&b\\c&d\end{matrix}\right) का लागि, विपरीत मेट्रिक्स \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) हो, त्यसैले मेट्रिक्स समिकरणलाई मेट्रिक्स गुणन समस्याका रूपमा पुन: लेख्न सकिन्छ।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\-\frac{1}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}5\\5\end{matrix}\right)
हिसाब गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{4}\times 5\\-\frac{1}{8}\times 5+\frac{5}{8}\times 5\end{matrix}\right)
मेट्रिक्सहरू गुणन गर्नुहोस्।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\\frac{5}{2}\end{matrix}\right)
हिसाब गर्नुहोस्।
y=0,x=\frac{5}{2}
मेट्रिक्स तत्त्वहरू y र x लाई ता्नुहोस्।
5y+2x=5,y+2x=5
निराकरण गरी हल गर्नको लागि, चरहरू मध्ये एउटा चरको गुणांक दुबै समीकरणहरूमा समान हुनुपर्छ जसले गर्दा अर्कोबाट एउटा समीकरण घटाउँदा चर काटिनेछ।
5y-y+2x-2x=5-5
बराबर चिन्हको प्रत्येक भागमा समान पदहरूलाई घटाएर 5y+2x=5 बाट y+2x=5 घटाउनुहोस्।
5y-y=5-5
-2x मा 2x जोड्नुहोस् समाधान हुन सक्ने एउटा मात्र चर भएको समीकरण छोड्दै 2x र -2x राशी रद्द हुन्छन्।
4y=5-5
-y मा 5y जोड्नुहोस्
4y=0
-5 मा 5 जोड्नुहोस्
y=0
दुबैतिर 4 ले भाग गर्नुहोस्।
2x=5
y+2x=5 मा y लाई 0 ले प्रतिस्थापन गर्नुहोस्। परिणामी समीकरणमा एउटा मात्र चर समावेश भएकोले, तपाइँले x लाई सिधै हल गर्न सक्नुहुन्छ।
y=0,x=\frac{5}{2}
अब प्रणाली समाधान भएको छ।