मूल्याङ्कन गर्नुहोस्
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
भिन्नता w.r.t. x
\frac{2\left(-3x^{2}+37x-137\right)}{\left(\left(x-7\right)\left(x+3\right)\right)^{2}}
ग्राफ
साझेदारी गर्नुहोस्
क्लिपबोर्डमा प्रतिलिपि गरियो
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3}
गुणनखण्ड x^{2}-4x-21।
\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(x-7\right)\left(x+3\right) र x-7 को लघुत्तम समापवर्तक \left(x-7\right)\left(x+3\right) हो। \frac{3}{x-7} लाई \frac{x+3}{x+3} पटक गुणन गर्नुहोस्।
\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
\frac{5x}{\left(x-7\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3\left(x+3\right) लाई गुणन गर्नुहोस्।
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3}
5x-3x-9 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(x-7\right)\left(x+3\right) र x+3 को लघुत्तम समापवर्तक \left(x-7\right)\left(x+3\right) हो। \frac{4}{x+3} लाई \frac{x-7}{x-7} पटक गुणन गर्नुहोस्।
\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)}
\frac{2x-9}{\left(x-7\right)\left(x+3\right)} र \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)}
2x-9+4\left(x-7\right) लाई गुणन गर्नुहोस्।
\frac{6x-37}{\left(x-7\right)\left(x+3\right)}
2x-9+4x-28 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{6x-37}{x^{2}-4x-21}
\left(x-7\right)\left(x+3\right) लाई विस्तार गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3}{x-7}+\frac{4}{x+3})
गुणनखण्ड x^{2}-4x-21।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x}{\left(x-7\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(x-7\right)\left(x+3\right) र x-7 को लघुत्तम समापवर्तक \left(x-7\right)\left(x+3\right) हो। \frac{3}{x-7} लाई \frac{x+3}{x+3} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
\frac{5x}{\left(x-7\right)\left(x+3\right)} and \frac{3\left(x+3\right)}{\left(x-7\right)\left(x+3\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश घटाएर घटाउनुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-3x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3\left(x+3\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4}{x+3})
5x-3x-9 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9}{\left(x-7\right)\left(x+3\right)}+\frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
अभिव्यञ्जकहरू जोड्न वा घटाउन, तिनीहरुको हरलाई एउटै बनाउन तिनीहरूलाई विस्ता गर्नुहोस्। \left(x-7\right)\left(x+3\right) र x+3 को लघुत्तम समापवर्तक \left(x-7\right)\left(x+3\right) हो। \frac{4}{x+3} लाई \frac{x-7}{x-7} पटक गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)})
\frac{2x-9}{\left(x-7\right)\left(x+3\right)} र \frac{4\left(x-7\right)}{\left(x-7\right)\left(x+3\right)} को हर एउटै भएकाले, तिनीहरूलाई तिनीहरूको अंश जोडेर जोड्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-9+4x-28}{\left(x-7\right)\left(x+3\right)})
2x-9+4\left(x-7\right) लाई गुणन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{\left(x-7\right)\left(x+3\right)})
2x-9+4x-28 मा भएका पदहरू जस्तै संयोजन गर्नुहोस्।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x-37}{x^{2}-4x-21})
x-7 लाई x+3 ले गुणन गरेर पदहरू जस्तै गरी संयोजन गर्न वितरणमूलक गुण प्रयोग गर्नुहोस्।
\frac{\left(x^{2}-4x^{1}-21\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{1}-37)-\left(6x^{1}-37\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x^{1}-21)}{\left(x^{2}-4x^{1}-21\right)^{2}}
कुनैपनि दुई भिन्न फलनहरूको लागि, दुईवटा फलनका भागफलको डेरिभेटिभ भहरको परिमाण हो, अंशको डेरिभेटिभ अंशको परिमाणको ऋणात्मक हुन्छ, हरको डेरिभेटिभलाई सबै वर्गाकार हरले भाग गरिन्छ।
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{1-1}-\left(6x^{1}-37\right)\left(2x^{2-1}-4x^{1-1}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
बहुपदीयको व्युत्पन्न भनेको यसका पदहरूको व्युत्पन्नहरूको योगफल हो। कुनैपनि अचल पदको व्युत्पन्न 0 हुन्छ। ax^{n} को व्युत्पन्न nax^{n-1} हो।
\frac{\left(x^{2}-4x^{1}-21\right)\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
सरल गर्नुहोस्।
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}-37\right)\left(2x^{1}-4x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
x^{2}-4x^{1}-21 लाई 6x^{0} पटक गुणन गर्नुहोस्।
\frac{x^{2}\times 6x^{0}-4x^{1}\times 6x^{0}-21\times 6x^{0}-\left(6x^{1}\times 2x^{1}+6x^{1}\left(-4\right)x^{0}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
6x^{1}-37 लाई 2x^{1}-4x^{0} पटक गुणन गर्नुहोस्।
\frac{6x^{2}-4\times 6x^{1}-21\times 6x^{0}-\left(6\times 2x^{1+1}+6\left(-4\right)x^{1}-37\times 2x^{1}-37\left(-4\right)x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
समान आधारका पावरहरूलाई गुणा गर्नको लागि, उनीहरूका घातांकहरू जोड्नुहोस्।
\frac{6x^{2}-24x^{1}-126x^{0}-\left(12x^{2}-24x^{1}-74x^{1}+148x^{0}\right)}{\left(x^{2}-4x^{1}-21\right)^{2}}
सरल गर्नुहोस्।
\frac{-6x^{2}+74x^{1}-274x^{0}}{\left(x^{2}-4x^{1}-21\right)^{2}}
समान पदहरू संयोजन गर्नुहोस्।
\frac{-6x^{2}+74x-274x^{0}}{\left(x^{2}-4x-21\right)^{2}}
कुनैपनि पदका लागि t, t^{1}=t।
\frac{-6x^{2}+74x-274}{\left(x^{2}-4x-21\right)^{2}}
0 बाहेक कुनैपनि t पदका लागि, t^{0}=1।
उदाहरणहरू[सम्पादन गर्ने]
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिति
4 \sin \theta \cos \theta = 2 \sin \theta
रैखिक समीकरण
y = 3x + 4
अंकगणित
699 * 533
म्याट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालिक समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भिन्नता
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
सीमाहरू
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}