Hopp til hovedinnhold
Løs for x
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

xx+x\left(-5\right)+6=0
Variabelen x kan ikke være lik 0 siden divisjon med null ikke er definert. Multipliser begge sider av ligningen med x.
x^{2}+x\left(-5\right)+6=0
Multipliser x med x for å få x^{2}.
a+b=-5 ab=6
Hvis du vil løse formelen, faktor x^{2}-5x+6 å bruke formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-6 -2,-3
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 6.
-1-6=-7 -2-3=-5
Beregn summen for hvert par.
a=-3 b=-2
Løsningen er paret som gir Summer -5.
\left(x-3\right)\left(x-2\right)
Skriv om det faktoriserte uttrykket \left(x+a\right)\left(x+b\right) ved hjelp av de oppnådde verdiene.
x=3 x=2
Hvis du vil finne formel løsninger, kan du løse x-3=0 og x-2=0.
xx+x\left(-5\right)+6=0
Variabelen x kan ikke være lik 0 siden divisjon med null ikke er definert. Multipliser begge sider av ligningen med x.
x^{2}+x\left(-5\right)+6=0
Multipliser x med x for å få x^{2}.
a+b=-5 ab=1\times 6=6
For å løse ligningen, faktorer du venstre side ved gruppering. Første, venstre side må skrives på nytt som x^{2}+ax+bx+6. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-6 -2,-3
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 6.
-1-6=-7 -2-3=-5
Beregn summen for hvert par.
a=-3 b=-2
Løsningen er paret som gir Summer -5.
\left(x^{2}-3x\right)+\left(-2x+6\right)
Skriv om x^{2}-5x+6 som \left(x^{2}-3x\right)+\left(-2x+6\right).
x\left(x-3\right)-2\left(x-3\right)
Faktor ut x i den første og -2 i den andre gruppen.
\left(x-3\right)\left(x-2\right)
Faktorer ut det felles leddet x-3 ved å bruke den distributive lov.
x=3 x=2
Hvis du vil finne formel løsninger, kan du løse x-3=0 og x-2=0.
xx+x\left(-5\right)+6=0
Variabelen x kan ikke være lik 0 siden divisjon med null ikke er definert. Multipliser begge sider av ligningen med x.
x^{2}+x\left(-5\right)+6=0
Multipliser x med x for å få x^{2}.
x^{2}-5x+6=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, -5 for b og 6 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
Kvadrer -5.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
Multipliser -4 ganger 6.
x=\frac{-\left(-5\right)±\sqrt{1}}{2}
Legg sammen 25 og -24.
x=\frac{-\left(-5\right)±1}{2}
Ta kvadratroten av 1.
x=\frac{5±1}{2}
Det motsatte av -5 er 5.
x=\frac{6}{2}
Nå kan du løse formelen x=\frac{5±1}{2} når ± er pluss. Legg sammen 5 og 1.
x=3
Del 6 på 2.
x=\frac{4}{2}
Nå kan du løse formelen x=\frac{5±1}{2} når ± er minus. Trekk fra 1 fra 5.
x=2
Del 4 på 2.
x=3 x=2
Ligningen er nå løst.
xx+x\left(-5\right)+6=0
Variabelen x kan ikke være lik 0 siden divisjon med null ikke er definert. Multipliser begge sider av ligningen med x.
x^{2}+x\left(-5\right)+6=0
Multipliser x med x for å få x^{2}.
x^{2}+x\left(-5\right)=-6
Trekk fra 6 fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
x^{2}-5x=-6
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
Del -5, koeffisienten i x termen, etter 2 for å få -\frac{5}{2}. Deretter legger du til kvadrat firkanten av -\frac{5}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
Kvadrer -\frac{5}{2} ved å kvadrere både telleren og nevneren i brøken.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
Legg sammen -6 og \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
Faktoriser x^{2}-5x+\frac{25}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Ta kvadratroten av begge sider av ligningen.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
Forenkle.
x=3 x=2
Legg til \frac{5}{2} på begge sider av ligningen.