Løs for x
x=\cos(\theta )\left(\cos(\theta )+1\right)
Løs for θ
\left\{\begin{matrix}\theta =-\arccos(\frac{\sqrt{4x+1}+1}{2})+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}\text{; }\theta =\arccos(\frac{\sqrt{4x+1}+1}{2})+2\pi n_{2}-\pi \text{, }n_{2}\in \mathrm{Z}\text{, }&x\leq 0\text{ and }x\geq -\frac{1}{4}\text{ and }\frac{-\sqrt{4x+1}-1}{2}\geq -1\\\theta =-\arccos(\frac{-\sqrt{4x+1}+1}{2})+2\pi n_{3}+\pi \text{, }n_{3}\in \mathrm{Z}\text{; }\theta =\arccos(\frac{-\sqrt{4x+1}+1}{2})+2\pi n_{4}-\pi \text{, }n_{4}\in \mathrm{Z}\text{, }&x\leq 2\text{ and }x\geq -\frac{1}{4}\text{ and }\frac{\sqrt{4x+1}-1}{2}\leq 1\end{matrix}\right,
Graf
Aksje
Kopiert til utklippstavle
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}