Løs for k
k=\frac{x+3}{x+1}
x\neq -1
Løs for x
x=-\frac{3-k}{1-k}
k\neq 1
Graf
Aksje
Kopiert til utklippstavle
x-xk+3=k
Bruk den distributive lov til å multiplisere x med 1-k.
x-xk+3-k=0
Trekk fra k fra begge sider.
-xk+3-k=-x
Trekk fra x fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
-xk-k=-x-3
Trekk fra 3 fra begge sider.
\left(-x-1\right)k=-x-3
Kombiner alle ledd som inneholder k.
\frac{\left(-x-1\right)k}{-x-1}=\frac{-x-3}{-x-1}
Del begge sidene på -x-1.
k=\frac{-x-3}{-x-1}
Hvis du deler på -x-1, gjør du om gangingen med -x-1.
k=\frac{x+3}{x+1}
Del -x-3 på -x-1.
x-xk+3=k
Bruk den distributive lov til å multiplisere x med 1-k.
x-xk=k-3
Trekk fra 3 fra begge sider.
\left(1-k\right)x=k-3
Kombiner alle ledd som inneholder x.
\frac{\left(1-k\right)x}{1-k}=\frac{k-3}{1-k}
Del begge sidene på 1-k.
x=\frac{k-3}{1-k}
Hvis du deler på 1-k, gjør du om gangingen med 1-k.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}