Faktoriser
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Evaluer
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Graf
Aksje
Kopiert til utklippstavle
\left(x+4\right)\left(x^{2}-x-2\right)
Ifølge teoremet om rasjonale røtter er alle rasjonale røtter av et polynom i formen \frac{p}{q}, der p dividerer konstantleddet -8 og q dividerer den ledende koeffisienten 1. En slik rot er -4. Du kan faktorisere polynomet ved å dele det med x+4.
a+b=-1 ab=1\left(-2\right)=-2
Vurder x^{2}-x-2. Faktoriser uttrykket ved å gruppere. Først må uttrykket omskrives som x^{2}+ax+bx-2. Hvis du vil finne a og b, setter du opp et system som skal løses.
a=-2 b=1
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er negativ, har negative tallet større absolutt verdi enn positiv. Det eneste paret er system løsningen.
\left(x^{2}-2x\right)+\left(x-2\right)
Skriv om x^{2}-x-2 som \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Faktorer ut x i x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Faktorer ut det felles leddet x-2 ved å bruke den distributive lov.
\left(x-2\right)\left(x+1\right)\left(x+4\right)
Skriv om det fullførte faktoriserte uttrykket.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}