Løs for x
x=\sqrt{133}+12\approx 23,532562595
x=12-\sqrt{133}\approx 0,467437405
Graf
Aksje
Kopiert til utklippstavle
x^{2}-24x+11=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 11}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, -24 for b og 11 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 11}}{2}
Kvadrer -24.
x=\frac{-\left(-24\right)±\sqrt{576-44}}{2}
Multipliser -4 ganger 11.
x=\frac{-\left(-24\right)±\sqrt{532}}{2}
Legg sammen 576 og -44.
x=\frac{-\left(-24\right)±2\sqrt{133}}{2}
Ta kvadratroten av 532.
x=\frac{24±2\sqrt{133}}{2}
Det motsatte av -24 er 24.
x=\frac{2\sqrt{133}+24}{2}
Nå kan du løse formelen x=\frac{24±2\sqrt{133}}{2} når ± er pluss. Legg sammen 24 og 2\sqrt{133}.
x=\sqrt{133}+12
Del 24+2\sqrt{133} på 2.
x=\frac{24-2\sqrt{133}}{2}
Nå kan du løse formelen x=\frac{24±2\sqrt{133}}{2} når ± er minus. Trekk fra 2\sqrt{133} fra 24.
x=12-\sqrt{133}
Del 24-2\sqrt{133} på 2.
x=\sqrt{133}+12 x=12-\sqrt{133}
Ligningen er nå løst.
x^{2}-24x+11=0
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
x^{2}-24x+11-11=-11
Trekk fra 11 fra begge sider av ligningen.
x^{2}-24x=-11
Når du trekker fra 11 fra seg selv har du 0 igjen.
x^{2}-24x+\left(-12\right)^{2}=-11+\left(-12\right)^{2}
Del -24, koeffisienten i x termen, etter 2 for å få -12. Deretter legger du til kvadrat firkanten av -12 på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-24x+144=-11+144
Kvadrer -12.
x^{2}-24x+144=133
Legg sammen -11 og 144.
\left(x-12\right)^{2}=133
Faktoriser x^{2}-24x+144. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12\right)^{2}}=\sqrt{133}
Ta kvadratroten av begge sider av ligningen.
x-12=\sqrt{133} x-12=-\sqrt{133}
Forenkle.
x=\sqrt{133}+12 x=12-\sqrt{133}
Legg til 12 på begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}