Løs for x
x=4
x=7
Graf
Aksje
Kopiert til utklippstavle
x^{2}-11x+28=0
Legg til 28 på begge sider.
a+b=-11 ab=28
Hvis du vil løse formelen, faktor x^{2}-11x+28 å bruke formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-28 -2,-14 -4,-7
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 28.
-1-28=-29 -2-14=-16 -4-7=-11
Beregn summen for hvert par.
a=-7 b=-4
Løsningen er paret som gir Summer -11.
\left(x-7\right)\left(x-4\right)
Skriv om det faktoriserte uttrykket \left(x+a\right)\left(x+b\right) ved hjelp av de oppnådde verdiene.
x=7 x=4
Hvis du vil finne formel løsninger, kan du løse x-7=0 og x-4=0.
x^{2}-11x+28=0
Legg til 28 på begge sider.
a+b=-11 ab=1\times 28=28
For å løse ligningen, faktorer du venstre side ved gruppering. Første, venstre side må skrives på nytt som x^{2}+ax+bx+28. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-28 -2,-14 -4,-7
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 28.
-1-28=-29 -2-14=-16 -4-7=-11
Beregn summen for hvert par.
a=-7 b=-4
Løsningen er paret som gir Summer -11.
\left(x^{2}-7x\right)+\left(-4x+28\right)
Skriv om x^{2}-11x+28 som \left(x^{2}-7x\right)+\left(-4x+28\right).
x\left(x-7\right)-4\left(x-7\right)
Faktor ut x i den første og -4 i den andre gruppen.
\left(x-7\right)\left(x-4\right)
Faktorer ut det felles leddet x-7 ved å bruke den distributive lov.
x=7 x=4
Hvis du vil finne formel løsninger, kan du løse x-7=0 og x-4=0.
x^{2}-11x=-28
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x^{2}-11x-\left(-28\right)=-28-\left(-28\right)
Legg til 28 på begge sider av ligningen.
x^{2}-11x-\left(-28\right)=0
Når du trekker fra -28 fra seg selv har du 0 igjen.
x^{2}-11x+28=0
Trekk fra -28 fra 0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 28}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, -11 for b og 28 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 28}}{2}
Kvadrer -11.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2}
Multipliser -4 ganger 28.
x=\frac{-\left(-11\right)±\sqrt{9}}{2}
Legg sammen 121 og -112.
x=\frac{-\left(-11\right)±3}{2}
Ta kvadratroten av 9.
x=\frac{11±3}{2}
Det motsatte av -11 er 11.
x=\frac{14}{2}
Nå kan du løse formelen x=\frac{11±3}{2} når ± er pluss. Legg sammen 11 og 3.
x=7
Del 14 på 2.
x=\frac{8}{2}
Nå kan du løse formelen x=\frac{11±3}{2} når ± er minus. Trekk fra 3 fra 11.
x=4
Del 8 på 2.
x=7 x=4
Ligningen er nå løst.
x^{2}-11x=-28
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-28+\left(-\frac{11}{2}\right)^{2}
Del -11, koeffisienten i x termen, etter 2 for å få -\frac{11}{2}. Deretter legger du til kvadrat firkanten av -\frac{11}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-11x+\frac{121}{4}=-28+\frac{121}{4}
Kvadrer -\frac{11}{2} ved å kvadrere både telleren og nevneren i brøken.
x^{2}-11x+\frac{121}{4}=\frac{9}{4}
Legg sammen -28 og \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{9}{4}
Faktoriser x^{2}-11x+\frac{121}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Ta kvadratroten av begge sider av ligningen.
x-\frac{11}{2}=\frac{3}{2} x-\frac{11}{2}=-\frac{3}{2}
Forenkle.
x=7 x=4
Legg til \frac{11}{2} på begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}