Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

x\left(x+6\right)
Faktoriser ut x.
x^{2}+6x=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}}}{2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-6±6}{2}
Ta kvadratroten av 6^{2}.
x=\frac{0}{2}
Nå kan du løse formelen x=\frac{-6±6}{2} når ± er pluss. Legg sammen -6 og 6.
x=0
Del 0 på 2.
x=-\frac{12}{2}
Nå kan du løse formelen x=\frac{-6±6}{2} når ± er minus. Trekk fra 6 fra -6.
x=-6
Del -12 på 2.
x^{2}+6x=x\left(x-\left(-6\right)\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 0 med x_{1} og -6 med x_{2}.
x^{2}+6x=x\left(x+6\right)
Forenkle alle uttrykkene i formelen fra p-\left(-q\right) til p+q.