x ^ { 2 } + 5 x - 14 \quad \text { 2 } \quad 3 x ^ { 2 } + 20 x + 25
Evaluer
25+25x-83x^{2}
Faktoriser
-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
Graf
Spørrelek
5 problemer som ligner på:
x ^ { 2 } + 5 x - 14 \quad \text { 2 } \quad 3 x ^ { 2 } + 20 x + 25
Aksje
Kopiert til utklippstavle
x^{2}+5x-28\times 3x^{2}+20x+25
Multipliser 14 med 2 for å få 28.
x^{2}+5x-84x^{2}+20x+25
Multipliser 28 med 3 for å få 84.
-83x^{2}+5x+20x+25
Kombiner x^{2} og -84x^{2} for å få -83x^{2}.
-83x^{2}+25x+25
Kombiner 5x og 20x for å få 25x.
factor(x^{2}+5x-28\times 3x^{2}+20x+25)
Multipliser 14 med 2 for å få 28.
factor(x^{2}+5x-84x^{2}+20x+25)
Multipliser 28 med 3 for å få 84.
factor(-83x^{2}+5x+20x+25)
Kombiner x^{2} og -84x^{2} for å få -83x^{2}.
factor(-83x^{2}+25x+25)
Kombiner 5x og 20x for å få 25x.
-83x^{2}+25x+25=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\left(-83\right)\times 25}}{2\left(-83\right)}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-25±\sqrt{625-4\left(-83\right)\times 25}}{2\left(-83\right)}
Kvadrer 25.
x=\frac{-25±\sqrt{625+332\times 25}}{2\left(-83\right)}
Multipliser -4 ganger -83.
x=\frac{-25±\sqrt{625+8300}}{2\left(-83\right)}
Multipliser 332 ganger 25.
x=\frac{-25±\sqrt{8925}}{2\left(-83\right)}
Legg sammen 625 og 8300.
x=\frac{-25±5\sqrt{357}}{2\left(-83\right)}
Ta kvadratroten av 8925.
x=\frac{-25±5\sqrt{357}}{-166}
Multipliser 2 ganger -83.
x=\frac{5\sqrt{357}-25}{-166}
Nå kan du løse formelen x=\frac{-25±5\sqrt{357}}{-166} når ± er pluss. Legg sammen -25 og 5\sqrt{357}.
x=\frac{25-5\sqrt{357}}{166}
Del -25+5\sqrt{357} på -166.
x=\frac{-5\sqrt{357}-25}{-166}
Nå kan du løse formelen x=\frac{-25±5\sqrt{357}}{-166} når ± er minus. Trekk fra 5\sqrt{357} fra -25.
x=\frac{5\sqrt{357}+25}{166}
Del -25-5\sqrt{357} på -166.
-83x^{2}+25x+25=-83\left(x-\frac{25-5\sqrt{357}}{166}\right)\left(x-\frac{5\sqrt{357}+25}{166}\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt \frac{25-5\sqrt{357}}{166} med x_{1} og \frac{25+5\sqrt{357}}{166} med x_{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}