Løs for v
v=0
Aksje
Kopiert til utklippstavle
v^{2}=0\times 4\left(125+15\right)
Multipliser 2 med 0 for å få 0.
v^{2}=0\left(125+15\right)
Multipliser 0 med 4 for å få 0.
v^{2}=0\times 140
Legg sammen 125 og 15 for å få 140.
v^{2}=0
Multipliser 0 med 140 for å få 0.
v=0 v=0
Ta kvadratroten av begge sider av ligningen.
v=0
Ligningen er nå løst. Løsninger er de samme.
v^{2}=0\times 4\left(125+15\right)
Multipliser 2 med 0 for å få 0.
v^{2}=0\left(125+15\right)
Multipliser 0 med 4 for å få 0.
v^{2}=0\times 140
Legg sammen 125 og 15 for å få 140.
v^{2}=0
Multipliser 0 med 140 for å få 0.
v=\frac{0±\sqrt{0^{2}}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, 0 for b og 0 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{0±0}{2}
Ta kvadratroten av 0^{2}.
v=0
Del 0 på 2.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}