Løs for j
j=\frac{-4k\sin(3t)-\frac{i\cos(t)}{t}}{5}
t\neq 0
Løs for k
\left\{\begin{matrix}k=-\frac{i\cos(t)+5jt}{4t\sin(3t)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{1}}{3}\\k\in \mathrm{C}\text{, }&j=-\frac{i\cos(t)}{5t}\text{ and }t\neq 0\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{1}}{3}\end{matrix}\right,
Aksje
Kopiert til utklippstavle
5tj+4\sin(3t)kt=-i\cos(t)
Trekk fra i\cos(t) fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
5tj=-i\cos(t)-4\sin(3t)kt
Trekk fra 4\sin(3t)kt fra begge sider.
5tj=-4kt\sin(3t)-i\cos(t)
Ligningen er i standardform.
\frac{5tj}{5t}=\frac{-4kt\sin(3t)-i\cos(t)}{5t}
Del begge sidene på 5t.
j=\frac{-4kt\sin(3t)-i\cos(t)}{5t}
Hvis du deler på 5t, gjør du om gangingen med 5t.
j=\frac{-4k\sin(3t)-\frac{i\cos(t)}{t}}{5}
Del -i\cos(t)-4kt\sin(3t) på 5t.
5tj+4\sin(3t)kt=-i\cos(t)
Trekk fra i\cos(t) fra begge sider. Hvilket som helst tall trukket fra null gir sin negasjon.
4\sin(3t)kt=-i\cos(t)-5tj
Trekk fra 5tj fra begge sider.
4t\sin(3t)k=-i\cos(t)-5jt
Ligningen er i standardform.
\frac{4t\sin(3t)k}{4t\sin(3t)}=\frac{-i\cos(t)-5jt}{4t\sin(3t)}
Del begge sidene på 4\sin(3t)t.
k=\frac{-i\cos(t)-5jt}{4t\sin(3t)}
Hvis du deler på 4\sin(3t)t, gjør du om gangingen med 4\sin(3t)t.
k=-\frac{\frac{i\cos(t)}{t}+5j}{4\sin(t)\left(4\left(\cos(t)\right)^{2}-1\right)}
Del -i\cos(t)-5tj på 4\sin(3t)t.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}