Faktoriser
m\left(m-3\right)
Evaluer
m\left(m-3\right)
Aksje
Kopiert til utklippstavle
m\left(m-3\right)
Faktoriser ut m.
m^{2}-3m=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
m=\frac{-\left(-3\right)±3}{2}
Ta kvadratroten av \left(-3\right)^{2}.
m=\frac{3±3}{2}
Det motsatte av -3 er 3.
m=\frac{6}{2}
Nå kan du løse formelen m=\frac{3±3}{2} når ± er pluss. Legg sammen 3 og 3.
m=3
Del 6 på 2.
m=\frac{0}{2}
Nå kan du løse formelen m=\frac{3±3}{2} når ± er minus. Trekk fra 3 fra 3.
m=0
Del 0 på 2.
m^{2}-3m=\left(m-3\right)m
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 3 med x_{1} og 0 med x_{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}