Faktoriser
\left(m-\left(6-\sqrt{26}\right)\right)\left(m-\left(\sqrt{26}+6\right)\right)
Evaluer
m^{2}-12m+10
Spørrelek
Polynomial
m ^ { 2 } - 12 m + 10
Aksje
Kopiert til utklippstavle
m^{2}-12m+10=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 10}}{2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
m=\frac{-\left(-12\right)±\sqrt{144-4\times 10}}{2}
Kvadrer -12.
m=\frac{-\left(-12\right)±\sqrt{144-40}}{2}
Multipliser -4 ganger 10.
m=\frac{-\left(-12\right)±\sqrt{104}}{2}
Legg sammen 144 og -40.
m=\frac{-\left(-12\right)±2\sqrt{26}}{2}
Ta kvadratroten av 104.
m=\frac{12±2\sqrt{26}}{2}
Det motsatte av -12 er 12.
m=\frac{2\sqrt{26}+12}{2}
Nå kan du løse formelen m=\frac{12±2\sqrt{26}}{2} når ± er pluss. Legg sammen 12 og 2\sqrt{26}.
m=\sqrt{26}+6
Del 12+2\sqrt{26} på 2.
m=\frac{12-2\sqrt{26}}{2}
Nå kan du løse formelen m=\frac{12±2\sqrt{26}}{2} når ± er minus. Trekk fra 2\sqrt{26} fra 12.
m=6-\sqrt{26}
Del 12-2\sqrt{26} på 2.
m^{2}-12m+10=\left(m-\left(\sqrt{26}+6\right)\right)\left(m-\left(6-\sqrt{26}\right)\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 6+\sqrt{26} med x_{1} og 6-\sqrt{26} med x_{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}