Hopp til hovedinnhold
Løs for h
Tick mark Image

Lignende problemer fra nettsøk

Aksje

h^{2}+3h-6=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
h=\frac{-3±\sqrt{3^{2}-4\left(-6\right)}}{2}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 1 for a, 3 for b og -6 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-3±\sqrt{9-4\left(-6\right)}}{2}
Kvadrer 3.
h=\frac{-3±\sqrt{9+24}}{2}
Multipliser -4 ganger -6.
h=\frac{-3±\sqrt{33}}{2}
Legg sammen 9 og 24.
h=\frac{\sqrt{33}-3}{2}
Nå kan du løse formelen h=\frac{-3±\sqrt{33}}{2} når ± er pluss. Legg sammen -3 og \sqrt{33}.
h=\frac{-\sqrt{33}-3}{2}
Nå kan du løse formelen h=\frac{-3±\sqrt{33}}{2} når ± er minus. Trekk fra \sqrt{33} fra -3.
h=\frac{\sqrt{33}-3}{2} h=\frac{-\sqrt{33}-3}{2}
Ligningen er nå løst.
h^{2}+3h-6=0
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
h^{2}+3h-6-\left(-6\right)=-\left(-6\right)
Legg til 6 på begge sider av ligningen.
h^{2}+3h=-\left(-6\right)
Når du trekker fra -6 fra seg selv har du 0 igjen.
h^{2}+3h=6
Trekk fra -6 fra 0.
h^{2}+3h+\left(\frac{3}{2}\right)^{2}=6+\left(\frac{3}{2}\right)^{2}
Del 3, koeffisienten i x termen, etter 2 for å få \frac{3}{2}. Deretter legger du til kvadrat firkanten av \frac{3}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
h^{2}+3h+\frac{9}{4}=6+\frac{9}{4}
Kvadrer \frac{3}{2} ved å kvadrere både telleren og nevneren i brøken.
h^{2}+3h+\frac{9}{4}=\frac{33}{4}
Legg sammen 6 og \frac{9}{4}.
\left(h+\frac{3}{2}\right)^{2}=\frac{33}{4}
Faktoriser h^{2}+3h+\frac{9}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Ta kvadratroten av begge sider av ligningen.
h+\frac{3}{2}=\frac{\sqrt{33}}{2} h+\frac{3}{2}=-\frac{\sqrt{33}}{2}
Forenkle.
h=\frac{\sqrt{33}-3}{2} h=\frac{-\sqrt{33}-3}{2}
Trekk fra \frac{3}{2} fra begge sider av ligningen.