Løs for P
P=-\frac{-4x^{4}-2x^{3}+ax-20}{ex}
x\neq 0
Løs for a
a=4x^{3}+2x^{2}-eP+\frac{20}{x}
x\neq 0
Graf
Aksje
Kopiert til utklippstavle
exP=4x^{4}+2x^{3}-ax+20
Ligningen er i standardform.
\frac{exP}{ex}=\frac{4x^{4}+2x^{3}-ax+20}{ex}
Del begge sidene på ex.
P=\frac{4x^{4}+2x^{3}-ax+20}{ex}
Hvis du deler på ex, gjør du om gangingen med ex.
2x^{3}+4x^{4}-ax+20=ePx
Bytt om sidene, slik at alle variabelledd er på venstre side.
4x^{4}-ax+20=ePx-2x^{3}
Trekk fra 2x^{3} fra begge sider.
-ax+20=ePx-2x^{3}-4x^{4}
Trekk fra 4x^{4} fra begge sider.
-ax=ePx-2x^{3}-4x^{4}-20
Trekk fra 20 fra begge sider.
\left(-x\right)a=-4x^{4}-2x^{3}+ePx-20
Ligningen er i standardform.
\frac{\left(-x\right)a}{-x}=\frac{-4x^{4}-2x^{3}+ePx-20}{-x}
Del begge sidene på -x.
a=\frac{-4x^{4}-2x^{3}+ePx-20}{-x}
Hvis du deler på -x, gjør du om gangingen med -x.
a=4x^{3}+2x^{2}-eP+\frac{20}{x}
Del ePx-2x^{3}-4x^{4}-20 på -x.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}