d v - \sin x \sin y d x = 0
Løs for v
\left\{\begin{matrix}v=\frac{\sin(x)\sin(dxy)}{d}\text{, }&d\neq 0\\v\in \mathrm{R}\text{, }&d=0\text{ and }\left(x\neq 0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ or }y=0\right)\end{matrix}\right,
Aksje
Kopiert til utklippstavle
dv=0+\sin(x)\sin(ydx)
Legg til \sin(x)\sin(ydx) på begge sider.
dv=\sin(x)\sin(ydx)
Hvilket som helst tall pluss null gir seg selv.
dv=\sin(x)\sin(dxy)
Ligningen er i standardform.
\frac{dv}{d}=\frac{\sin(x)\sin(dxy)}{d}
Del begge sidene på d.
v=\frac{\sin(x)\sin(dxy)}{d}
Hvis du deler på d, gjør du om gangingen med d.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}