Løs for a_2 (complex solution)
\left\{\begin{matrix}a_{2}=\frac{x+7}{y}\text{, }&y\neq 0\\a_{2}\in \mathrm{C}\text{, }&x=-7\text{ and }y=0\end{matrix}\right,
Løs for a_2
\left\{\begin{matrix}a_{2}=\frac{x+7}{y}\text{, }&y\neq 0\\a_{2}\in \mathrm{R}\text{, }&x=-7\text{ and }y=0\end{matrix}\right,
Løs for x
x=a_{2}y-7
Graf
Aksje
Kopiert til utklippstavle
a_{2}y=7+x
Legg til x på begge sider.
ya_{2}=x+7
Ligningen er i standardform.
\frac{ya_{2}}{y}=\frac{x+7}{y}
Del begge sidene på y.
a_{2}=\frac{x+7}{y}
Hvis du deler på y, gjør du om gangingen med y.
a_{2}y=7+x
Legg til x på begge sider.
ya_{2}=x+7
Ligningen er i standardform.
\frac{ya_{2}}{y}=\frac{x+7}{y}
Del begge sidene på y.
a_{2}=\frac{x+7}{y}
Hvis du deler på y, gjør du om gangingen med y.
-x=7-a_{2}y
Trekk fra a_{2}y fra begge sider.
\frac{-x}{-1}=\frac{7-a_{2}y}{-1}
Del begge sidene på -1.
x=\frac{7-a_{2}y}{-1}
Hvis du deler på -1, gjør du om gangingen med -1.
x=a_{2}y-7
Del 7-a_{2}y på -1.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}