Løs for T_1
T_{1}=Sr_{0}
r_{0}\neq 0\text{ and }S\neq 0\text{ and }h\neq 0
Løs for S
S=\frac{T_{1}}{r_{0}}
r_{0}\neq 0\text{ and }h\neq 0\text{ and }T_{1}\neq 0
Aksje
Kopiert til utklippstavle
S=\frac{h^{2}T_{1}}{r_{0}h^{2}}
Variabelen T_{1} kan ikke være lik 0 siden divisjon med null ikke er definert. Del \frac{h^{2}}{r_{0}} på \frac{h^{2}}{T_{1}} ved å multiplisere \frac{h^{2}}{r_{0}} med den resiproke verdien av \frac{h^{2}}{T_{1}}.
S=\frac{T_{1}}{r_{0}}
Eliminer h^{2} i både teller og nevner.
\frac{T_{1}}{r_{0}}=S
Bytt om sidene, slik at alle variabelledd er på venstre side.
T_{1}=Sr_{0}
Multipliser begge sider av ligningen med r_{0}.
T_{1}=Sr_{0}\text{, }T_{1}\neq 0
Variabelen T_{1} kan ikke være lik 0.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}