Faktoriser
2\left(x-\left(-\frac{\sqrt{2}}{2}+1\right)\right)\left(x-\left(\frac{\sqrt{2}}{2}+1\right)\right)
Evaluer
2x^{2}-4x+1
Graf
Aksje
Kopiert til utklippstavle
2x^{2}-4x+1=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2}}{2\times 2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2}}{2\times 2}
Kvadrer -4.
x=\frac{-\left(-4\right)±\sqrt{16-8}}{2\times 2}
Multipliser -4 ganger 2.
x=\frac{-\left(-4\right)±\sqrt{8}}{2\times 2}
Legg sammen 16 og -8.
x=\frac{-\left(-4\right)±2\sqrt{2}}{2\times 2}
Ta kvadratroten av 8.
x=\frac{4±2\sqrt{2}}{2\times 2}
Det motsatte av -4 er 4.
x=\frac{4±2\sqrt{2}}{4}
Multipliser 2 ganger 2.
x=\frac{2\sqrt{2}+4}{4}
Nå kan du løse formelen x=\frac{4±2\sqrt{2}}{4} når ± er pluss. Legg sammen 4 og 2\sqrt{2}.
x=\frac{\sqrt{2}}{2}+1
Del 4+2\sqrt{2} på 4.
x=\frac{4-2\sqrt{2}}{4}
Nå kan du løse formelen x=\frac{4±2\sqrt{2}}{4} når ± er minus. Trekk fra 2\sqrt{2} fra 4.
x=-\frac{\sqrt{2}}{2}+1
Del 4-2\sqrt{2} på 4.
2x^{2}-4x+1=2\left(x-\left(\frac{\sqrt{2}}{2}+1\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}+1\right)\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 1+\frac{\sqrt{2}}{2} med x_{1} og 1-\frac{\sqrt{2}}{2} med x_{2}.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}