Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

x^{2}-6x+9
Skriv polynomet på standardform ved å plassere leddene i rekkefølge fra høyeste til laveste potens.
a+b=-6 ab=1\times 9=9
Faktor iser uttrykket ved å gruppere. Først må uttrykket omskrives som x^{2}+ax+bx+9. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-9 -3,-3
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 9.
-1-9=-10 -3-3=-6
Beregn summen for hvert par.
a=-3 b=-3
Løsningen er paret som gir Summer -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Skriv om x^{2}-6x+9 som \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Faktor ut x i den første og -3 i den andre gruppen.
\left(x-3\right)\left(x-3\right)
Faktorer ut det felles leddet x-3 ved å bruke den distributive lov.
\left(x-3\right)^{2}
Skriv på nytt som et binomialt kvadrat.
factor(x^{2}-6x+9)
Dette trinomet er et trinom i andre potens, kanskje multiplisert med en fellesfaktor. Trinom i andre potens kan faktoriseres ved å finne kvadratroten av ledende og etterfølgende ledd.
\sqrt{9}=3
Finn kvadratroten av det etterfølgende leddet, 9.
\left(x-3\right)^{2}
Trinomisk kvadrat er kvadratet av binomet som er summen av eller forskjellen mellom kvadratroten til ledende og etterfølgende ledd, med tegn som bestemmes av tegnet for midtleddet i trinomkvadratet.
x^{2}-6x+9=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Kvadrer -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Multipliser -4 ganger 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Legg sammen 36 og -36.
x=\frac{-\left(-6\right)±0}{2}
Ta kvadratroten av 0.
x=\frac{6±0}{2}
Det motsatte av -6 er 6.
x^{2}-6x+9=\left(x-3\right)\left(x-3\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt 3 med x_{1} og 3 med x_{2}.