Løs for x
x = \frac{\sqrt{17} + 5}{2} \approx 4,561552813
x=\frac{5-\sqrt{17}}{2}\approx 0,438447187
Graf
Aksje
Kopiert til utklippstavle
8x-\left(x^{2}+3x\right)=2
Bruk den distributive lov til å multiplisere x med x+3.
8x-x^{2}-3x=2
Du finner den motsatte av x^{2}+3x ved å finne den motsatte av hvert ledd.
5x-x^{2}=2
Kombiner 8x og -3x for å få 5x.
5x-x^{2}-2=0
Trekk fra 2 fra begge sider.
-x^{2}+5x-2=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn -1 for a, 5 for b og -2 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Kvadrer 5.
x=\frac{-5±\sqrt{25+4\left(-2\right)}}{2\left(-1\right)}
Multipliser -4 ganger -1.
x=\frac{-5±\sqrt{25-8}}{2\left(-1\right)}
Multipliser 4 ganger -2.
x=\frac{-5±\sqrt{17}}{2\left(-1\right)}
Legg sammen 25 og -8.
x=\frac{-5±\sqrt{17}}{-2}
Multipliser 2 ganger -1.
x=\frac{\sqrt{17}-5}{-2}
Nå kan du løse formelen x=\frac{-5±\sqrt{17}}{-2} når ± er pluss. Legg sammen -5 og \sqrt{17}.
x=\frac{5-\sqrt{17}}{2}
Del -5+\sqrt{17} på -2.
x=\frac{-\sqrt{17}-5}{-2}
Nå kan du løse formelen x=\frac{-5±\sqrt{17}}{-2} når ± er minus. Trekk fra \sqrt{17} fra -5.
x=\frac{\sqrt{17}+5}{2}
Del -5-\sqrt{17} på -2.
x=\frac{5-\sqrt{17}}{2} x=\frac{\sqrt{17}+5}{2}
Ligningen er nå løst.
8x-\left(x^{2}+3x\right)=2
Bruk den distributive lov til å multiplisere x med x+3.
8x-x^{2}-3x=2
Du finner den motsatte av x^{2}+3x ved å finne den motsatte av hvert ledd.
5x-x^{2}=2
Kombiner 8x og -3x for å få 5x.
-x^{2}+5x=2
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=\frac{2}{-1}
Del begge sidene på -1.
x^{2}+\frac{5}{-1}x=\frac{2}{-1}
Hvis du deler på -1, gjør du om gangingen med -1.
x^{2}-5x=\frac{2}{-1}
Del 5 på -1.
x^{2}-5x=-2
Del 2 på -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-2+\left(-\frac{5}{2}\right)^{2}
Del -5, koeffisienten i x termen, etter 2 for å få -\frac{5}{2}. Deretter legger du til kvadrat firkanten av -\frac{5}{2} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til en perfekt firkant.
x^{2}-5x+\frac{25}{4}=-2+\frac{25}{4}
Kvadrer -\frac{5}{2} ved å kvadrere både telleren og nevneren i brøken.
x^{2}-5x+\frac{25}{4}=\frac{17}{4}
Legg sammen -2 og \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{17}{4}
Faktoriser x^{2}-5x+\frac{25}{4}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Ta kvadratroten av begge sider av ligningen.
x-\frac{5}{2}=\frac{\sqrt{17}}{2} x-\frac{5}{2}=-\frac{\sqrt{17}}{2}
Forenkle.
x=\frac{\sqrt{17}+5}{2} x=\frac{5-\sqrt{17}}{2}
Legg til \frac{5}{2} på begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}