Løs for x (complex solution)
x=\frac{\sqrt[3]{6\sqrt{1473}+235}+\sqrt[3]{235-6\sqrt{1473}}+1}{15}\approx 0,695101482
x=\frac{4}{5}=0,8
x=-\frac{\left(1+\sqrt{3}i\right)\left(-\sqrt[3]{3\left(18\sqrt{491}+235\sqrt{3}\right)}i-\sqrt[3]{6\sqrt{1473}+235}+2\sqrt[3]{235-6\sqrt{1473}}-1+\sqrt{3}i\right)}{60}\approx -0,247550741+0,350520191i
x=-\frac{\left(-\sqrt{3}i+1\right)\left(-\sqrt{3}i-\sqrt[3]{6\sqrt{1473}+235}+2\sqrt[3]{235-6\sqrt{1473}}-1+\sqrt[3]{3\left(18\sqrt{491}+235\sqrt{3}\right)}i\right)}{60}\approx -0,247550741-0,350520191i
Graf
Aksje
Kopiert til utklippstavle
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}