Løs for x
x=-\frac{1}{3}\approx -0,333333333
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Graf
Spørrelek
Polynomial
6 x ^ { 2 } - 7 x - 3 = 0
Aksje
Kopiert til utklippstavle
a+b=-7 ab=6\left(-3\right)=-18
For å løse ligningen faktoriserer du venstre side ved å gruppere. Først må venstre side omskrives som 6x^{2}+ax+bx-3. Hvis du vil finne a og b, setter du opp et system som skal løses.
1,-18 2,-9 3,-6
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er negativ, har negative tallet større absolutt verdi enn positiv. Vis alle slike hel talls par som gir produkt -18.
1-18=-17 2-9=-7 3-6=-3
Beregn summen for hvert par.
a=-9 b=2
Løsningen er paret som gir Summer -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Skriv om 6x^{2}-7x-3 som \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Faktorer ut 3x i 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Faktorer ut det felles leddet 2x-3 ved å bruke den distributive lov.
x=\frac{3}{2} x=-\frac{1}{3}
Hvis du vil finne formel løsninger, kan du løse 2x-3=0 og 3x+1=0.
6x^{2}-7x-3=0
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Denne ligningen er i standard form: ax^{2}+bx+c=0. Sett inn 6 for a, -7 for b og -3 for c i andregradsformelen, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Kvadrer -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Multipliser -4 ganger 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Multipliser -24 ganger -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Legg sammen 49 og 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Ta kvadratroten av 121.
x=\frac{7±11}{2\times 6}
Det motsatte av -7 er 7.
x=\frac{7±11}{12}
Multipliser 2 ganger 6.
x=\frac{18}{12}
Nå kan du løse formelen x=\frac{7±11}{12} når ± er pluss. Legg sammen 7 og 11.
x=\frac{3}{2}
Forkort brøken \frac{18}{12} til minste felles nevner ved å dele teller og nevner på 6.
x=-\frac{4}{12}
Nå kan du løse formelen x=\frac{7±11}{12} når ± er minus. Trekk fra 11 fra 7.
x=-\frac{1}{3}
Forkort brøken \frac{-4}{12} til minste felles nevner ved å dele teller og nevner på 4.
x=\frac{3}{2} x=-\frac{1}{3}
Ligningen er nå løst.
6x^{2}-7x-3=0
Andregradsligninger som denne kan løses ved å fullføre kvadratet. For å kunne fullføre kvadratet, må ligningen først ha formen x^{2}+bx=c.
6x^{2}-7x-3-\left(-3\right)=-\left(-3\right)
Legg til 3 på begge sider av ligningen.
6x^{2}-7x=-\left(-3\right)
Når du trekker fra -3 fra seg selv har du 0 igjen.
6x^{2}-7x=3
Trekk fra -3 fra 0.
\frac{6x^{2}-7x}{6}=\frac{3}{6}
Del begge sidene på 6.
x^{2}-\frac{7}{6}x=\frac{3}{6}
Hvis du deler på 6, gjør du om gangingen med 6.
x^{2}-\frac{7}{6}x=\frac{1}{2}
Forkort brøken \frac{3}{6} til minste felles nevner ved å dele teller og nevner på 3.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(-\frac{7}{12}\right)^{2}
Divider -\frac{7}{6}, koeffisienten til leddet x, med 2 for å få -\frac{7}{12}. Legg deretter til kvadratet av -\frac{7}{12} på begge sider av ligningen. Dette trinnet gjør venstre side av ligningen til et perfekt kvadrat.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
Kvadrer -\frac{7}{12} ved å kvadrere både telleren og nevneren i brøken.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
Legg sammen \frac{1}{2} og \frac{49}{144} ved å finne en fellesnevner og legge sammen tellerne. Forkort deretter brøken om mulig.
\left(x-\frac{7}{12}\right)^{2}=\frac{121}{144}
Faktoriser x^{2}-\frac{7}{6}x+\frac{49}{144}. Generelt, når x^{2}+bx+c er et kvadrattall, kan det alltid faktoriseres som \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Ta kvadratroten av begge sider av ligningen.
x-\frac{7}{12}=\frac{11}{12} x-\frac{7}{12}=-\frac{11}{12}
Forenkle.
x=\frac{3}{2} x=-\frac{1}{3}
Legg til \frac{7}{12} på begge sider av ligningen.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}