Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image

Lignende problemer fra nettsøk

Aksje

a+b=-13 ab=6\times 6=36
Faktor iser uttrykket ved å gruppere. Først må uttrykket omskrives som 6q^{2}+aq+bq+6. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Siden ab er positiv, a og b har samme fortegn. Siden a+b er negativ, er både a og b negative. Vis alle slike hel talls par som gir produkt 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Beregn summen for hvert par.
a=-9 b=-4
Løsningen er paret som gir Summer -13.
\left(6q^{2}-9q\right)+\left(-4q+6\right)
Skriv om 6q^{2}-13q+6 som \left(6q^{2}-9q\right)+\left(-4q+6\right).
3q\left(2q-3\right)-2\left(2q-3\right)
Faktor ut 3q i den første og -2 i den andre gruppen.
\left(2q-3\right)\left(3q-2\right)
Faktorer ut det felles leddet 2q-3 ved å bruke den distributive lov.
6q^{2}-13q+6=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
q=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 6}}{2\times 6}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
q=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 6}}{2\times 6}
Kvadrer -13.
q=\frac{-\left(-13\right)±\sqrt{169-24\times 6}}{2\times 6}
Multipliser -4 ganger 6.
q=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 6}
Multipliser -24 ganger 6.
q=\frac{-\left(-13\right)±\sqrt{25}}{2\times 6}
Legg sammen 169 og -144.
q=\frac{-\left(-13\right)±5}{2\times 6}
Ta kvadratroten av 25.
q=\frac{13±5}{2\times 6}
Det motsatte av -13 er 13.
q=\frac{13±5}{12}
Multipliser 2 ganger 6.
q=\frac{18}{12}
Nå kan du løse formelen q=\frac{13±5}{12} når ± er pluss. Legg sammen 13 og 5.
q=\frac{3}{2}
Forkort brøken \frac{18}{12} til minste felles nevner ved å dele teller og nevner på 6.
q=\frac{8}{12}
Nå kan du løse formelen q=\frac{13±5}{12} når ± er minus. Trekk fra 5 fra 13.
q=\frac{2}{3}
Forkort brøken \frac{8}{12} til minste felles nevner ved å dele teller og nevner på 4.
6q^{2}-13q+6=6\left(q-\frac{3}{2}\right)\left(q-\frac{2}{3}\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt \frac{3}{2} med x_{1} og \frac{2}{3} med x_{2}.
6q^{2}-13q+6=6\times \frac{2q-3}{2}\left(q-\frac{2}{3}\right)
Trekk fra \frac{3}{2} fra q ved å finne en fellesnevner og trekke fra tellerne. Forkort deretter brøken om mulig.
6q^{2}-13q+6=6\times \frac{2q-3}{2}\times \frac{3q-2}{3}
Trekk fra \frac{2}{3} fra q ved å finne en fellesnevner og trekke fra tellerne. Forkort deretter brøken om mulig.
6q^{2}-13q+6=6\times \frac{\left(2q-3\right)\left(3q-2\right)}{2\times 3}
Multipliser \frac{2q-3}{2} med \frac{3q-2}{3} ved å multiplisere teller ganger teller og nevner ganger nevner. Forkort deretter brøken om mulig.
6q^{2}-13q+6=6\times \frac{\left(2q-3\right)\left(3q-2\right)}{6}
Multipliser 2 ganger 3.
6q^{2}-13q+6=\left(2q-3\right)\left(3q-2\right)
Opphev den største felles faktoren 6 i 6 og 6.