Evaluer
\frac{2\left(15x^{3}-22x^{2}-48x-6\right)}{5x+6}
Differensier med hensyn til x
\frac{4\left(75x^{3}+80x^{2}-132x-129\right)}{\left(5x+6\right)^{2}}
Graf
Aksje
Kopiert til utklippstavle
6x^{2}-16x-\frac{12}{5x+6}
Kombiner 5x^{2} og x^{2} for å få 6x^{2}.
\frac{\left(6x^{2}-16x\right)\left(5x+6\right)}{5x+6}-\frac{12}{5x+6}
Hvis du vil legge til eller trekke fra uttrykk, kan du utvide dem for å gjøre nevnerne like. Multipliser 6x^{2}-16x ganger \frac{5x+6}{5x+6}.
\frac{\left(6x^{2}-16x\right)\left(5x+6\right)-12}{5x+6}
Siden \frac{\left(6x^{2}-16x\right)\left(5x+6\right)}{5x+6} og \frac{12}{5x+6} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
\frac{30x^{3}+36x^{2}-80x^{2}-96x-12}{5x+6}
Utfør multiplikasjonene i \left(6x^{2}-16x\right)\left(5x+6\right)-12.
\frac{30x^{3}-44x^{2}-96x-12}{5x+6}
Kombiner like ledd i 30x^{3}+36x^{2}-80x^{2}-96x-12.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}