5 = ( 1 + 96 \% ) ^ { n }
Løs for n
n = \frac{\log_{\frac{7}{5}} {(5)}}{2} \approx 2,391635531
Aksje
Kopiert til utklippstavle
5=\left(1+\frac{24}{25}\right)^{n}
Forkort brøken \frac{96}{100} til minste felles nevner ved å dele teller og nevner på 4.
5=\left(\frac{49}{25}\right)^{n}
Legg sammen 1 og \frac{24}{25} for å få \frac{49}{25}.
\left(\frac{49}{25}\right)^{n}=5
Bytt om sidene, slik at alle variabelledd er på venstre side.
\log(\left(\frac{49}{25}\right)^{n})=\log(5)
Ta logaritmen for begge sider av ligningen.
n\log(\frac{49}{25})=\log(5)
Logaritmen til et tall som er opphøyd i en potens, er potensen ganger logaritmen til tallet.
n=\frac{\log(5)}{\log(\frac{49}{25})}
Del begge sidene på \log(\frac{49}{25}).
n=\log_{\frac{49}{25}}\left(5\right)
Ved formelen for å endre grunntallet i logaritmen \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}