Hopp til hovedinnhold
Faktoriser
Tick mark Image
Evaluer
Tick mark Image
Graf

Lignende problemer fra nettsøk

Aksje

-x^{2}+3x+4
Skriv polynomet på standardform ved å plassere leddene i rekkefølge fra høyeste til laveste potens.
a+b=3 ab=-4=-4
Faktor iser uttrykket ved å gruppere. Først må uttrykket omskrives som -x^{2}+ax+bx+4. Hvis du vil finne a og b, setter du opp et system som skal løses.
-1,4 -2,2
Siden ab er negativ, a og b har motsatt tegn. Siden a+b er positiv, har det positive tallet større absolutt verdi enn det negative. Vis alle slike hel talls par som gir produkt -4.
-1+4=3 -2+2=0
Beregn summen for hvert par.
a=4 b=-1
Løsningen er paret som gir Summer 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Skriv om -x^{2}+3x+4 som \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Faktor ut -x i den første og -1 i den andre gruppen.
\left(x-4\right)\left(-x-1\right)
Faktorer ut det felles leddet x-4 ved å bruke den distributive lov.
-x^{2}+3x+4=0
Kvadratisk ligning for polynom kan faktoriseres ved hjelp av transformasjonen ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), der x_{1} og x_{2} er løsningene for den kvadratiske ligningen ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Alle formler for skjemaet ax^{2}+bx+c=0 kan løses ved hjelp av den kvadratiske formelen: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Den kvadratiske formelen gir to løsninger, én når ± er addisjon og en når det er subtraksjon.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kvadrer 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Multipliser -4 ganger -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Multipliser 4 ganger 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Legg sammen 9 og 16.
x=\frac{-3±5}{2\left(-1\right)}
Ta kvadratroten av 25.
x=\frac{-3±5}{-2}
Multipliser 2 ganger -1.
x=\frac{2}{-2}
Nå kan du løse formelen x=\frac{-3±5}{-2} når ± er pluss. Legg sammen -3 og 5.
x=-1
Del 2 på -2.
x=-\frac{8}{-2}
Nå kan du løse formelen x=\frac{-3±5}{-2} når ± er minus. Trekk fra 5 fra -3.
x=4
Del -8 på -2.
-x^{2}+3x+4=-\left(x-\left(-1\right)\right)\left(x-4\right)
Faktoriser det opprinnelige uttrykket ved hjelp av ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Erstatt -1 med x_{1} og 4 med x_{2}.
-x^{2}+3x+4=-\left(x+1\right)\left(x-4\right)
Forenkle alle uttrykkene i formelen fra p-\left(-q\right)til p+q.