Løs for x (complex solution)
x\in \mathrm{C}
Løs for x
x\in \mathrm{R}
Graf
Aksje
Kopiert til utklippstavle
4x^{2}-9=\left(2x\right)^{2}-9
Vurder \left(2x+3\right)\left(2x-3\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrer 3.
4x^{2}-9=2^{2}x^{2}-9
Utvid \left(2x\right)^{2}.
4x^{2}-9=4x^{2}-9
Regn ut 2 opphøyd i 2 og få 4.
4x^{2}-9-4x^{2}=-9
Trekk fra 4x^{2} fra begge sider.
-9=-9
Kombiner 4x^{2} og -4x^{2} for å få 0.
\text{true}
Sammenlign -9 og -9.
x\in \mathrm{C}
Dette er sant for alle x.
4x^{2}-9=\left(2x\right)^{2}-9
Vurder \left(2x+3\right)\left(2x-3\right). Multiplikasjon kan forvandles til differansen av kvadratene ved hjelp av regelen: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kvadrer 3.
4x^{2}-9=2^{2}x^{2}-9
Utvid \left(2x\right)^{2}.
4x^{2}-9=4x^{2}-9
Regn ut 2 opphøyd i 2 og få 4.
4x^{2}-9-4x^{2}=-9
Trekk fra 4x^{2} fra begge sider.
-9=-9
Kombiner 4x^{2} og -4x^{2} for å få 0.
\text{true}
Sammenlign -9 og -9.
x\in \mathrm{R}
Dette er sant for alle x.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}