Løs for a
a=-\frac{3b}{16}-\frac{3c}{8}+\frac{49}{16}
Løs for b
b=-\frac{16a}{3}-2c+\frac{49}{3}
Aksje
Kopiert til utklippstavle
32a+12c=98-6b
Trekk fra 6b fra begge sider.
32a=98-6b-12c
Trekk fra 12c fra begge sider.
32a=98-12c-6b
Ligningen er i standardform.
\frac{32a}{32}=\frac{98-12c-6b}{32}
Del begge sidene på 32.
a=\frac{98-12c-6b}{32}
Hvis du deler på 32, gjør du om gangingen med 32.
a=-\frac{3b}{16}-\frac{3c}{8}+\frac{49}{16}
Del 98-6b-12c på 32.
6b+12c=98-32a
Trekk fra 32a fra begge sider.
6b=98-32a-12c
Trekk fra 12c fra begge sider.
6b=98-12c-32a
Ligningen er i standardform.
\frac{6b}{6}=\frac{98-12c-32a}{6}
Del begge sidene på 6.
b=\frac{98-12c-32a}{6}
Hvis du deler på 6, gjør du om gangingen med 6.
b=-\frac{16a}{3}-2c+\frac{49}{3}
Del 98-32a-12c på 6.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}