Løs for x
x=3
Graf
Aksje
Kopiert til utklippstavle
3x^{2}x\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Variabelen x kan ikke være lik noen av verdiene -1,0 siden divisjon med null ikke er definert. Multipliser begge sider av formelen med x\left(x+1\right), som er den minste fellesnevneren av x^{2}+x,x,x+1.
3x^{3}\left(x+1\right)+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
For å multiplisere potensene av det samme grunntallet, må du legge til eksponentene deres. Legg til 2 og 1 for å få 3.
3x^{4}+3x^{3}+5xx\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Bruk den distributive lov til å multiplisere 3x^{3} med x+1.
3x^{4}+3x^{3}+5x^{2}\left(x+1\right)+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Multipliser x med x for å få x^{2}.
3x^{4}+3x^{3}+5x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Bruk den distributive lov til å multiplisere 5x^{2} med x+1.
3x^{4}+8x^{3}+5x^{2}+x\left(x+1\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Kombiner 3x^{3} og 5x^{3} for å få 8x^{3}.
3x^{4}+8x^{3}+5x^{2}+\left(x^{2}+x\right)\times 7+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Bruk den distributive lov til å multiplisere x med x+1.
3x^{4}+8x^{3}+5x^{2}+7x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Bruk den distributive lov til å multiplisere x^{2}+x med 7.
3x^{4}+8x^{3}+12x^{2}+7x+2x^{3}+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Kombiner 5x^{2} og 7x^{2} for å få 12x^{2}.
3x^{4}+10x^{3}+12x^{2}+7x+3x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Kombiner 8x^{3} og 2x^{3} for å få 10x^{3}.
3x^{4}+10x^{3}+12x^{2}+10x+16=\left(x+1\right)\left(10x^{3}+12x+4\right)-x\left(2+7x^{3}\right)
Kombiner 7x og 3x for å få 10x.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-x\left(2+7x^{3}\right)
Bruk den distributive lov til å multiplisere x+1 med 10x^{3}+12x+4 og kombinere like ledd.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-\left(2x+7x^{4}\right)
Bruk den distributive lov til å multiplisere x med 2+7x^{3}.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+16x+10x^{3}+4-2x-7x^{4}
Du finner den motsatte av 2x+7x^{4} ved å finne den motsatte av hvert ledd.
3x^{4}+10x^{3}+12x^{2}+10x+16=10x^{4}+12x^{2}+14x+10x^{3}+4-7x^{4}
Kombiner 16x og -2x for å få 14x.
3x^{4}+10x^{3}+12x^{2}+10x+16=3x^{4}+12x^{2}+14x+10x^{3}+4
Kombiner 10x^{4} og -7x^{4} for å få 3x^{4}.
3x^{4}+10x^{3}+12x^{2}+10x+16-3x^{4}=12x^{2}+14x+10x^{3}+4
Trekk fra 3x^{4} fra begge sider.
10x^{3}+12x^{2}+10x+16=12x^{2}+14x+10x^{3}+4
Kombiner 3x^{4} og -3x^{4} for å få 0.
10x^{3}+12x^{2}+10x+16-12x^{2}=14x+10x^{3}+4
Trekk fra 12x^{2} fra begge sider.
10x^{3}+10x+16=14x+10x^{3}+4
Kombiner 12x^{2} og -12x^{2} for å få 0.
10x^{3}+10x+16-14x=10x^{3}+4
Trekk fra 14x fra begge sider.
10x^{3}-4x+16=10x^{3}+4
Kombiner 10x og -14x for å få -4x.
10x^{3}-4x+16-10x^{3}=4
Trekk fra 10x^{3} fra begge sider.
-4x+16=4
Kombiner 10x^{3} og -10x^{3} for å få 0.
-4x=4-16
Trekk fra 16 fra begge sider.
-4x=-12
Trekk fra 16 fra 4 for å få -12.
x=\frac{-12}{-4}
Del begge sidene på -4.
x=3
Del -12 på -4 for å få 3.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}