Løs for x
x = -\frac{31}{9} = -3\frac{4}{9} \approx -3,444444444
Graf
Spørrelek
Linear Equation
3 x + 9 = 12 / - 9
Aksje
Kopiert til utklippstavle
3x+9=-\frac{4}{3}
Forkort brøken \frac{12}{-9} til minste felles nevner ved å dele teller og nevner på 3.
3x=-\frac{4}{3}-9
Trekk fra 9 fra begge sider.
3x=-\frac{4}{3}-\frac{27}{3}
Konverter 9 til brøk \frac{27}{3}.
3x=\frac{-4-27}{3}
Siden -\frac{4}{3} og \frac{27}{3} har samme nevner, kan du subtrahere dem ved å subtrahere tellerne.
3x=-\frac{31}{3}
Trekk fra 27 fra -4 for å få -31.
x=\frac{-\frac{31}{3}}{3}
Del begge sidene på 3.
x=\frac{-31}{3\times 3}
Uttrykk \frac{-\frac{31}{3}}{3} som en enkelt brøk.
x=\frac{-31}{9}
Multipliser 3 med 3 for å få 9.
x=-\frac{31}{9}
Brøken \frac{-31}{9} kan omskrives til -\frac{31}{9} ved å trekke ut det negative fortegnet.
Eksempler
Kvadratisk ligning
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Lineær ligning
y = 3x + 4
Aritmetikk
699 * 533
Matrise
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig formel
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrasjon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Grenser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}